Klin Padiatr 2013; 225(01): 3-7
DOI: 10.1055/s-0032-1331170
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Der alternative Androgensyntheseweg des Menschen

The Alternative Androgen Synthesis Pathway in Humans
C. Kamrath
1   Abteilung Allgemeine Pädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin der JLU Gießen, Gießen, Germany
,
M. F. Hartmann
1   Abteilung Allgemeine Pädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin der JLU Gießen, Gießen, Germany
,
S. Wudy
1   Abteilung Allgemeine Pädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin der JLU Gießen, Gießen, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
17 January 2013 (online)

Zusammenfassung

Hintergrund:

Im letzten Jahr konnten beim Menschen neue alternative Androgensynthesewege nachgewiesen werden, welche zuvor nur bei einigen Nage- und Beuteltieren bekannt waren. Ziel dieses Artikels ist es, die neuen Erkenntnisse um diese neuen Androgensynthesewege beim Menschen darzustellen.

Methodik:

Selektive Literaturrecherche in PubMed.

Ergebnisse:

Nachdem bei einer Känguruhart ein neuer Stoffwechselweg der Androgensyn­these aufgezeigt werden konnte, ist die Bedeutung dieses neuen Androgensyntheseweges im Verlauf des letzten Jahres auch beim Menschen nachgewiesen worden. Zum Einen konnte die Bedeutung des neuen Syntheseweges für die fetale männliche Geschlechtsentwicklung belegt werden. Es wurde nachgewiesen, dass bei Jungen mit Unterentwicklung der äußeren Geschlechtsorgane ein spezielles Gen, welches für ein Enzym des neuen Androgensyntheseweges kodiert, defekt war. Des Weiteren konnte bei Patienten mit Adrenogenitalem Syndrom, welche vermehrt Androgene bilden, gezeigt werden, dass ein Teil der Androgene dem neuen Syntheseweg entstammen. Zudem konnte auch in der Prostata beim kastrations­resistenten Prostatakarzinom ein alternativer Androgensyntheseweg nachgewiesen werden.

Schlussfolgerung:

Durch Änderung des Angebotes an Androgenvorläufern, sowie Änderungen der Aktivität von Enzymen, die an der Androgensynthese beteiligt sind, können neue alternative Synthesewege beim Menschen beschritten werden. Diese spielen sich jedoch durch ein Umgehen der gewöhnlichen Vorläuferandrogene wie Dehydroepiandrosteron, Androstendion und Testosteron im Verborgenen ab.

Abstract

Objective:

During the last year, alternative androgen synthesis pathways have been discovered in humans. This review article highlights these new concepts of androgen synthesis.

Design and Methods:

We performed a selec­tive literature research using PubMed.

Results:

After the discovery of a new androgen synthesis pathway in marsupials, this new path­way of androgen synthesis could be established in humans during the last year from two independent studies. One of them could demonstrate that two pathways of androgen synthesis are needed for male sexual differentiation in humans; the other study established that the new pathway is an important source of androgen synthesis in congenitale adrenal hyperplasia due to 21-hydroxylase deficiency. Additionally, it has been shown that an alternative androgen synthesis pathway that bypasses testosterone drives castration resistant prostate cancer.

Conclusion:

New and alternative androgen path­ways occur in humans. Importantly, these path­ways remain cryptic for the clinician, because the androgen synthesis circumvents classical in­termediates like dehydroepiandrosterone, androstenedione and testosterone.

 
  • Literatur

  • 1 Arlt W, Walker EA, Draper N et al. Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. Lancet 2004; 363: 2128-2135
  • 2 Auchus RJ, Lee TC, Miller WL. Cytochrome b5 augments the 17,20 lyase activity of human P450c17 without direct electron transfer. J Biol Chem 1998; 273: 3158-3165
  • 3 Auchus RJ. The backdoor pathway to dihydrotestosterone. Trends Endocrinol Metab 2004; 15: 432-438
  • 4 Bartsch G, Rittmaster RS, Klocker H. Dihydrotestosterone and the concept of 5alpha-reductase inhibition in human benign prostatic hyperplasia. World J Urol 2002; 19: 413-425
  • 5 Chang KH, Li R, Papari-Zareei M et al. Dihydrotestosterone synthesis bypasses testosterone to drive castration resistant prostate cancer. Proc Nat Acad Sci USA 2011; 108: 13728-13733
  • 6 de Bono JS, Logothetis CJ, Molina A et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364: 1995-2005
  • 7 Eckstein B, Borut A, Cohen S. Metabolic pathways for androstanediol formation in immature rat testis microsomes. Biochim Biophys Acta 1987; 924: 1-6
  • 8 Flück CE, Meyer-Böni M, Pandey AV et al. Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation. Am J Hum Genet 2011; 89: 201-218
  • 9 Flück CE, Miller WL, Auchus RJ. The 17, 20-lyase activity of cytochrome P450c17 from human fetal testis favors the Δ5 steroidogenic pathway. J Clin Endocrinol Metab 2003; 88: 3762-3766
  • 10 Frederiksen DW, Wilson JD. Partial characterization of the nuclear reduced nicotinamide adenine dinucleotide phosphate: Δ 4-3-ketosteroid 5α-oxidoreductase of rat prostate. J Biol Chem 1971; 246: 2584-2593
  • 11 Gupta MK, Guryev OL, Auchus RJ. 5α-reduced C21 steroids are substrates for human cytochrome P450c17. Arch Biochem Biophys 2003; 418: 151-160
  • 12 Homma K, Hasegawa T, Nagai T et al. Urine steroid hormone profile analysis in cytochrome P450 oxidoreductase deficiency: implication for the backdoor pathway to dihydrotestosterone. J Clin Endocrinol Metab 2006; 91: 2643-2649
  • 13 Huggins C. Prostatic cancer treated by orchiectomy; the five year results. JAMA 1946; 15: 576-581
  • 14 Imperato-McGinley J, Guerrero L, Gautier T et al. Steroid 5alpha-reductase deficiency in man: an inherited form of male pseudohermaphroditism. Science 1974; 186: 1213-1215
  • 15 Kamrath C, Hartmann MF, Remer T et al. The activities of 5α-reductase and 17,20-lyase determine the direction through androgen synthesis pathways in patients with 21-hydroxylase deficiency. Steroids 2012; 77: 1391-1397
  • 16 Kamrath C, Hochberg Z, Hartmann MF et al. Increased activation of the alternative ‘backdoor’ pathway in patients with 21-hydroxylase deficiency: evidence from urinary steroid hormone analysis. J Clin Endocrinol Metab 2012; 97: E367-E375
  • 17 Labrie F, Dupont A, Giguere M et al. Benefits of combination therapy with flutamide in patients relapsing after castration. Br J Urol 1988; 61: 341-346
  • 18 Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32: 81-151
  • 19 Mohler JL, Titus MA, Bai S et al. Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Res 2011; 71: 1486-1496
  • 20 Mostaghel EA, Page ST, Lin DW et al. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 2007; 67: 5033-5041
  • 21 Nishiyama T, Hashimoto Y, Takahashi K. The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin Cancer Res 2004; 10: 7121-7126
  • 22 Page ST, Lin DW, Mostaghel EA et al. Persistent intraprostatic androgen concentrations after medical castration in healthy men. J Clin Endocrinol Metab 2006; 91: 3850-3856
  • 23 Russell DW, Wilson JD. Steroid 5a-reductase: two genes/two enzymes. Annu Rev Biochem 1994; 63: 25-61
  • 24 Samson M, Labrie F, Zouboulis CC et al. Biosynthesis of dihydrotestosterone by a pathway that does not require testosterone as an intermediate in the SZ95 sebaceous gland cell line. J Invest Dermatol 2010; 130: 602-604
  • 25 Sharifi N, Auchus RJ. Steroid biosynthesis and prostate cancer. Steroids 2012; 77: 719-726
  • 26 Sharifi N, Gulley JL, Dahut WL. Androgen deprivation therapy for prostate cancer. JAMA 2005; 294: 238-244
  • 27 Shaw G, Fenelon J, Sichlau M et al. Role of the alternate pathway of dihydrotestosterone formation in virilization of the Wolffian ducts of the tammar wallaby, Macropus eugenii. Endocrinology 2006; 147: 2368-2373
  • 28 Stanbrough M, Bubley GJ, Ross K et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006; 66: 2815-2825
  • 29 Titus MA, Gregory CW, Ford 3rd OH et al. Steroid 5α-reductase isozymes I and II in recurrent prostate cancer. Clin Cancer Res 2005; 11: 4365-4371
  • 30 Titus MA, Schell MJ, Lih FB et al. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 2005; 11: 4653-4657
  • 31 Walsh PC, Wilson JD. The induction of prostatic hypertrophy in the dog with androstanediol. J Clin Invest 1976; 57: 1093-1097
  • 32 White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-hydro­xylase deficiency. Endocr Rev 2000; 21: 245-291
  • 33 Wilson JD, Auchus RJ, Leihy MW et al. 5α-androstane-3α,17β-diol is formed in tammar wallaby pouch young testes by a pathway involving 5α-pregnane-3α,17α-diol-20-one as a key intermediate. Endocrinology 2003; 144: 575-580
  • 34 Wilson JD. The role of 5α-reduction in steroid hormone physiology. Reprod Fertil Dev 2001; 13: 673-678
  • 35 Wudy SA, Hartmann MF. Gas chromatography-mass spectrometry profiling of steroids in times of molecular biology. Horm Metab Res 2004; 36: 415-422