Sportverletz Sportschaden 2013; 27(1): 28-33
DOI: 10.1055/s-0032-1330725
Originalarbeit/Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Effect of Instability Training Equipment on Lower Limb Kinematics and Muscle Activity

Auswirkung instabiler Trainingsgeräte auf die Kinematik und Muskelaktivität unterer Extremitäten
J. Pfusterschmied
1   Department of Sport Science, University of Salzburg, Rif, Austria
2   Christian Doppler Laboratory “Biomechanics in Skiing”, University of Salzburg, Rif, Austria
,
S. Lindinger
1   Department of Sport Science, University of Salzburg, Rif, Austria
2   Christian Doppler Laboratory “Biomechanics in Skiing”, University of Salzburg, Rif, Austria
,
M. Buchecker
1   Department of Sport Science, University of Salzburg, Rif, Austria
2   Christian Doppler Laboratory “Biomechanics in Skiing”, University of Salzburg, Rif, Austria
,
T. Stöggl
1   Department of Sport Science, University of Salzburg, Rif, Austria
2   Christian Doppler Laboratory “Biomechanics in Skiing”, University of Salzburg, Rif, Austria
,
H. Wagner
1   Department of Sport Science, University of Salzburg, Rif, Austria
2   Christian Doppler Laboratory “Biomechanics in Skiing”, University of Salzburg, Rif, Austria
,
E. Müller
1   Department of Sport Science, University of Salzburg, Rif, Austria
2   Christian Doppler Laboratory “Biomechanics in Skiing”, University of Salzburg, Rif, Austria
› Author Affiliations
Further Information

Publication History

Publication Date:
12 February 2013 (online)

Abstract

To improve the effectiveness of training or therapy, it is important to know the benefits for each type of instability training equipment. The aim of this study was to show differences in lower limb kinematics and muscle activation during single leg standing on a slackline (SL) compared to a multi-functional rocker board (MD) and an air cushion (AC). In 14 subjects, mean angular velocity of the hip, knee and ankle, as well as the muscle activity (iEMG) from six lower limb muscles were recorded during 12 s of single leg standing task. Ankle in-/eversion and knee ab-/adduction angular velocity were highest for SL followed by MD and AC (all p < 0.05), as well as in the hip flex-/extension angular velocity with higher values for SL compared with AC (p < 0.01). Regarding iEMG, the rectus femoris muscle showed higher values for SL compared with MD (p < 0.05) and AC (p < 0.01). iEMG of biceps femoris muscle demonstrated higher values for MD compared to AC (p < 0.05), but with no difference to SL. Balancing on a SL is a more challenging exercise for the postural control system compared to MD and AC, and affects the knee and hip joint motion in particular.

Zusammenfassung

Damit ein Training im Leistungssport oder eine Therapie nach Verletzungen möglichst effektiv gestaltet werden kann, muss die spezifische Eigenschaft jedes einzelnen Trainings- bzw. Therapiegerätes bekannt sein. Das Ziel dieser Studie war es, mögliche Unterschiede in der Gelenkskinematik und den Muskelaktivitäten der unteren Extremitäten während eines einbeinigen Standes auf einer Slackline (SL) zu jenen auf einem multi-funktionalen Kippelbrett (MD) bzw. auf einem Luftkissen (AC) zu untersuchen. Bei 14 Versuchspersonen wurden mittels 3D-Kinematik die mittlere Winkelgeschwindigkeit im Hüft-, Knie- und Sprunggelenk, sowie die Muskelaktivität (iEMG) von sechs Muskeln der unteren Extremitäten während eines 12 s Einbeinstandes aufgezeichnet. Die mittlere Winkelgeschwindigkeit bei der Sprunggelenksin-/eversion und Knieab-/adduktion war beim Stehen auf der Slackline am höchsten, gefolgt vom multi-funktionalen Kippelbrett und dem Luftkissen (alle p < 0.05). Zudem zeigten sich Unterschiede in der mittleren Winkelgeschwindigkeit der Hüftflex-/extension zwischen Slackline und Luftkissen (p < 0.01). Die Muskelaktivität (iEMG) des m. rectus femoris war gegenüber dem multi-funktionalen Kippelbrett (p < 0.05) und dem Luftkissen (p < 0.01) auf der Slackline erhöht. Zusätzlich konnten Unterschiede im iEMG des m. biceps femoris zwischen multi-funktionalen Kippelbrett und dem Luftkissen (p < 0.05) festgestellt werden, welche jedoch keine signifikanten Differenzen zu der Muskelaktivität auf der Slackline aufwiesen. Im Vergleich zu einem multi-funktionalen Kippelbrett oder einem Luftkissen scheint das Balancieren auf einer Slackline generell eine größere Herausforderung an die Gleichgewichtskontrolle zu stellen und fordert primär eine Stabilität im Knie- und Hüftgelenk.

 
  • References

  • 1 Taube W, Gollhofer A. Control and training of Posture and Balance. In: Komi PV. Ed. Neuromuscular Aspects of Sport Performance. Blackwell Publishing Ltd; 2011: 254-266
  • 2 DiStefano LJ, Clark MA, Padua DA. Evidence supporting balance training in healthy individuals: a systemic review. J Strength Cond Res 2009; 23: 2718-2731
  • 3 Wahl MJ, Behm DG. Not all instability training devices enhance muscle activation in highly resistance-trained individuals. J Strength Cond Res 2008; 22: 1360-1370
  • 4 Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice. Philadelphia: Williams & Wilkins; 2007: 157-180
  • 5 Kean CO, Behm DG, Young WB. Fixed foot balance training increases rectus femoris activation during landing and jump height in recreationally active women. J Sports Sci Med 2006; 5: 138-148
  • 6 Gollhofer A. Proprioceptive training: considerations for strength and power production. In: PV K. Ed. Strength and power in sport. 3. edn. Oxford: Blackwell; 2003: 331-342
  • 7 Granacher U, Iten N, Roth R et al. Slackline training for balance and strength promotion. Int J Sports med 2010; 31: 717-723
  • 8 Chimera NJ, Swanik KA, Swanik CB et al. Effects of plyometric training on muscle-activation strategies and performance in female athletes. J Athletic Train 2004; 39: 24-31
  • 9 Hrysomallis C. Relationship between balance ability, training and sports injury risk. Sports Med 2007; 37: 547-556
  • 10 Taube W, Gruber M, Gollhofer A. Spinal and supraspinal adaptations associated with balance training and their functional relevance. Acta Physiol (Oxf) 2008; 193: 101-116
  • 11 Dohm-Acker M, Spitzenpfeil P, Hartmann U. Effect of proprioceptive training tools for the muscles in stance stability. Sportverletz Sportschaden 2008; 22: 52-57
  • 12 Lehman GJ. An unstable support surface is not a sufficient condition for increases in muscle activity during rehabilitation exercise. J Can Chiropr Assoc 2007; 51: 139-143
  • 13 Soderman K, Werner S, Pietila T et al. Balance board training: prevention of traumatic injuries of the lower extremities in female soccer players? A prospective randomized intervention study. Knee Surg Sports Traumatol Arthrosc 2000; 8: 356-363
  • 14 Keller M, Pfusterschmied J, Buchecker M et al. Improved postural control after slackline training is accompanied by reduced H-reflexes. Scand J Med Sci Sports 2012; 471-477
  • 15 Pfusterschmied J, Buchecker M, Keller M et al. Supervised slackline training improves postural stability. Eur J Sport Sci 2013; 13 (1) 49-57
  • 16 Riemann BL, Myers JB, Lephart SM. Comparison of the ankle, knee, hip, and trunk corrective action shown during single-leg stance on firm, foam, and multiaxial surfaces. Arch Phys Med Rehabil 2003; 84: 90-95
  • 17 Allum JHJ, Carpenter MG, Honegger F. Directional aspects of balance corrections in man. IEEE engineering in medicine and biology magazine: the quarterly magazine of the Engineering in Medicine & Biology Society 2003; 22: 37-47
  • 18 Osborne MD, Chou LS, Laskowski ER et al. The effect of ankle disk training on muscle reaction time in subjects with a history of ankle sprain. Am J Sports Med 2001; 29: 627-632
  • 19 Sheth P, Yu B, Laskowski ER et al. Ankle disk training influences reaction times of selected muscles in a simulated ankle sprain. Am J Sports Med 1997; 25: 538-543
  • 20 Verhagen E, van der Beek A, Twisk J et al. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: a prospective controlled trial. Am J Sports Med 2004; 32: 1385-1393
  • 21 Benvenuti F, Mecacci R, Gineprari I et al. Kinematic characteristics of standing disequilibrium: reliability and validity of a posturographic protocol. Arch Phys Med Rehabil 1999; 80: 278-287
  • 22 Allum JH, Adkin AL, Carpenter MG et al. Trunk sway measures of postural stability during clinical balance tests: effects of a unilateral vestibular deficit. Gait Posture 2001; 14: 227-237
  • 23 Winter DA, Fuglevand AJ, Archer SE. Crosstalk in surface electromyography: Theoretical and practical estimates. J Electromyogr Kinesiol 1994; 4: 15-26
  • 24 Aagaard P, Simonsen EB, Andersen JL et al. Antagonist muscle coactivation during isokinetic knee extension. Scand J Med Sci Sports 2000; 10: 58-67
  • 25 Cohen J. Statistical Power for the Behavioral Sciences. NJ: Hillsdale; 1988
  • 26 Williams GN, Chmielewski T, Rudolph K et al. Dynamic knee stability: current theory and implications for clinicians and scientists. J Orthop Sports Phys Ther 2001; 31: 546-566
  • 27 Bruhn S, Kullmann N, Gollhofer A. The effects of a sensorimotor training and a strength training on postural stabilisation, maximum isometric contraction and jump performance. Int J Sports Med 2004; 25: 56-60
  • 28 Gruber M, Gollhofer A. Impact of sensorimotor training on the rate of force development and neural activation. Eur J Appl Physiol 2004; 92: 98-105
  • 29 Cressey EM, West CA, Tiberio DP et al. The effects of ten weeks of lower-body unstable surface training on markers of athletic performance. J Strength Cond Res 2007; 21: 561-567
  • 30 Seeber G, Zalpour C. The impact of slacklining on balance in the elderly. Präv Gesundheitsf 2011; 7: 30