Semin Reprod Med 2012; 30(05): 351-363
DOI: 10.1055/s-0032-1324718
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Molecular Genetics of Sex Determination and Sex Reversal in Mammals

Alexander Quinn
1   Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
,
Peter Koopman
1   Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
08 October 2012 (online)

Abstract

The process of sex determination in mammals normally unfolds in three distinct stages: (1) establishment of chromosomal sex at fertilization (XX or XY); (2) commitment to the appropriate pathway of gonadal differentiation with respect to chromosomal sex, through the action (or absence) of the Y chromosome gene SRY; and (3) correct development of secondary sexual characteristics, including internal and external genitalia, in accordance with gonadal sex. At any of these three steps, the process of sex determination can go awry, leading to disorders of sexual development. In this article, we review the typical mechanism and process of mammalian sex determination, with an emphasis on the well-characterized mouse and human models. We also consider aberrant mammalian sex determination, focusing on examples of sex reversal stemming from gene defects.

 
  • References

  • 1 Bull JJ. Evolution of Sex-Determining Mechanisms. Menlo Park, CA: Benjamin/Cummings Publishing Co; 1983
  • 2 Sinclair AH, Berta P, Palmer MS , et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990; 346 (6281) 240-244
  • 3 Gubbay J, Collignon J, Koopman P , et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 1990; 346 (6281) 245-250
  • 4 Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature 1991; 351 (6322) 117-121
  • 5 Foster JW, Brennan FE, Hampikian GK , et al. Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature 1992; 359 (6395) 531-533
  • 6 Marshall Graves JA. Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu Rev Genet 2008; 42: 565-586
  • 7 Lee PA, Houk CP, Ahmed SF, Hughes IA ; International Consensus Conference on Intersex organized by the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. Consensus statement on management of intersex disorders. Pediatrics 2006; 118 (2) e488-e500
  • 8 Hughes IA. Disorders of sex development: a new definition and classification. Best Pract Res Clin Endocrinol Metab 2008; 22 (1) 119-134
  • 9 Just W, Rau W, Vogel W , et al. Absence of Sry in species of the vole Ellobius. Nat Genet 1995; 11 (2) 117-118
  • 10 Soullier S, Hanni C, Catzeflis F, Berta P, Laudet V. Male sex determination in the spiny rat Tokudaia osimensis (Rodentia: Muridae) is not Sry dependent. Mamm Genome 1998; 9 (7) 590-592
  • 11 Sutou S, Mitsui Y, Tsuchiya K. Sex determination without the Y chromosome in two Japanese rodents Tokudaia osimensis osimensis and Tokudaia osimensis spp. Mamm Genome 2001; 12 (1) 17-21
  • 12 Just W, Baumstark A, Süss A , et al. Ellobius lutescens: sex determination and sex chromosome. Sex Dev 2007; 1 (4) 211-221
  • 13 Albrecht KH, Eicher EM. Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 2001; 240 (1) 92-107
  • 14 Burgoyne PS, Buehr M, McLaren A. XY follicle cells in ovaries of XX----XY female mouse chimaeras. Development 1988; 104 (4) 683-688
  • 15 Palmer SJ, Burgoyne PS. XY follicle cells in the ovaries of XO/XY and XO/XY/XYY mosaic mice. Development 1991; 111 (4) 1017-1019
  • 16 Palmer SJ, Burgoyne PS. In situ analysis of fetal, prepuberal and adult XX----XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY. Development 1991; 112 (1) 265-268
  • 17 Cool J, Carmona FD, Szucsik JC, Capel B. Peritubular myoid cells are not the migrating population required for testis cord formation in the XY gonad. Sex Dev 2008; 2 (3) 128-133
  • 18 Combes AN, Wilhelm D, Davidson T , et al. Endothelial cell migration directs testis cord formation. Dev Biol 2009; 326 (1) 112-120
  • 19 Martineau J, Nordqvist K, Tilmann C, Lovell-Badge R, Capel B. Male-specific cell migration into the developing gonad. Curr Biol 1997; 7 (12) 958-968
  • 20 Schmahl J, Eicher EM, Washburn LL, Capel B. Sry induces cell proliferation in the mouse gonad. Development 2000; 127 (1) 65-73
  • 21 Schmahl J, Capel B. Cell proliferation is necessary for the determination of male fate in the gonad. Dev Biol 2003; 258 (2) 264-276
  • 22 Brennan J, Capel B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 2004; 5 (7) 509-521
  • 23 Ross AJ, Capel B. Signaling at the crossroads of gonad development. Trends Endocrinol Metab 2005; 16 (1) 19-25
  • 24 Coveney D, Cool J, Oliver T, Capel B. Four-dimensional analysis of vascularization during primary development of an organ, the gonad. Proc Natl Acad Sci U S A 2008; 105 (20) 7212-7217
  • 25 Menke DB, Koubova J, Page DC. Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Dev Biol 2003; 262 (2) 303-312
  • 26 Bullejos M, Koopman P. Germ cells enter meiosis in a rostro-caudal wave during development of the mouse ovary. Mol Reprod Dev 2004; 68 (4) 422-428
  • 27 Hilscher B, Hilscher W, Bülthoff-Ohnolz B , et al. Kinetics of gametogenesis. I. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell Tissue Res 1974; 154 (4) 443-470
  • 28 McLaren A, Simpson E, Tomonari K, Chandler P, Hogg H. Male sexual differentiation in mice lacking H-Y antigen. Nature 1984; 312 (5994) 552-555
  • 29 Ford CE, Evans EP, Gardner RL. Marker chromosome analysis of two mouse chimaeras. J Embryol Exp Morphol 1975; 33 (2) 447-457
  • 30 Jost A. Recherches sur la différenciation sexuelle de l'embryon de lapin. Arch Anat Microsc Morphol Exp 1947; 36: 271-315
  • 31 Parker KL, Rice DA, Lala DS , et al. Steroidogenic factor 1: an essential mediator of endocrine development. Recent Prog Horm Res 2002; 57: 19-36
  • 32 Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994; 77 (4) 481-490
  • 33 Bland ML, Fowkes RC, Ingraham HA. Differential requirement for steroidogenic factor-1 gene dosage in adrenal development versus endocrine function. Mol Endocrinol 2004; 18 (4) 941-952
  • 34 Val P, Swain A. Mechanisms of disease: normal and abnormal gonadal development and sex determination in mammals. Nat Clin Pract Urol 2005; 2 (12) 616-627
  • 35 Hastie ND. Life, sex, and WT1 isoforms—three amino acids can make all the difference. Cell 2001; 106 (4) 391-394
  • 36 Kreidberg JA, Sariola H, Loring JM , et al. WT-1 is required for early kidney development. Cell 1993; 74 (4) 679-691
  • 37 Hammes A, Guo JK, Lutsch G , et al. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 2001; 106 (3) 319-329
  • 38 Wilhelm D, Englert C. The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes Dev 2002; 16 (14) 1839-1851
  • 39 Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S. Defects of urogenital development in mice lacking Emx2. Development 1997; 124 (9) 1653-1664
  • 40 Katoh-Fukui Y, Tsuchiya R, Shiroishi T , et al. Male-to-female sex reversal in M33 mutant mice. Nature 1998; 393 (6686) 688-692
  • 41 Katoh-Fukui Y, Owaki A, Toyama Y , et al. Mouse Polycomb M33 is required for splenic vascular and adrenal gland formation through regulating Ad4BP/SF1 expression. Blood 2005; 106 (5) 1612-1620
  • 42 Biason-Lauber A, Konrad D, Meyer M, DeBeaufort C, Schoenle EJ. Ovaries and female phenotype in a girl with 46,XY karyotype and mutations in the CBX2 gene. Am J Hum Genet 2009; 84 (5) 658-663
  • 43 Rossi P, Dolci S, Albanesi C, Grimaldi P, Geremia R. Direct evidence that the mouse sex-determining gene Sry is expressed in the somatic cells of male fetal gonads and in the germ cell line in the adult testis. Mol Reprod Dev 1993; 34 (4) 369-373
  • 44 Hacker A, Capel B, Goodfellow P, Lovell-Badge R. Expression of Sry, the mouse sex determining gene. Development 1995; 121 (6) 1603-1614
  • 45 Jeske YW, Bowles J, Greenfield A, Koopman P. Expression of a linear Sry transcript in the mouse genital ridge. Nat Genet 1995; 10 (4) 480-482
  • 46 Pilon N, Daneau I, Paradis V , et al. Porcine SRY promoter is a target for steroidogenic factor 1. Biol Reprod 2003; 68 (4) 1098-1106
  • 47 Tevosian SG, Albrecht KH, Crispino JD, Fujiwara Y, Eicher EM, Orkin SH. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 2002; 129 (19) 4627-4634
  • 48 Barbaux S, Niaudet P, Gubler MC , et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 1997; 17 (4) 467-470
  • 49 Bogani D, Siggers P, Brixey R , et al. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS Biol 2009; 7 (9) e1000196
  • 50 Nef S, Verma-Kurvari S, Merenmies J , et al. Testis determination requires insulin receptor family function in mice. Nature 2003; 426 (6964) 291-295
  • 51 Bradford ST, Wilhelm D, Bandiera R, Vidal V, Schedl A, Koopman P. A cell-autonomous role for WT1 in regulating Sry in vivo. Hum Mol Genet 2009; 18 (18) 3429-3438
  • 52 Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 2000; 227 (2) 239-255
  • 53 Gasca S, Cañizares J, De Santa Barbara P , et al. A nuclear export signal within the high mobility group domain regulates the nucleocytoplasmic translocation of SOX9 during sexual determination. Proc Natl Acad Sci U S A 2002; 99 (17) 11199-11204
  • 54 Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, Lovell-Badge R. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 1996; 14 (1) 62-68
  • 55 Sekido R, Bar I, Narváez V, Penny G, Lovell-Badge R. SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev Biol 2004; 274 (2) 271-279
  • 56 Bullejos M, Koopman P. Delayed Sry and Sox9 expression in developing mouse gonads underlies B6-Y(DOM) sex reversal. Dev Biol 2005; 278 (2) 473-481
  • 57 Hiramatsu R, Harikae K, Tsunekawa N, Kurohmaru M, Matsuo I, Kanai Y. FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Development 2010; 137 (2) 303-312
  • 58 Wilhelm D, Washburn LL, Truong V, Fellous M, Eicher EM, Koopman P. Antagonism of the testis- and ovary-determining pathways during ovotestis development in mice. Mech Dev 2009; 126 (5–6) 324-336
  • 59 Wilhelm D, Martinson F, Bradford S , et al. Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Dev Biol 2005; 287 (1) 111-124
  • 60 Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 2008; 453 (7197) 930-934
  • 61 Bagheri-Fam S, Sinclair AH, Koopman P, Harley VR. Conserved regulatory modules in the Sox9 testis-specific enhancer predict roles for SOX, TCF/LEF, Forkhead, DMRT, and GATA proteins in vertebrate sex determination. Int J Biochem Cell Biol 2010; 42 (3) 472-477
  • 62 Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM. Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 2001; 104 (6) 875-889
  • 63 Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 2004; 131 (15) 3627-3636
  • 64 Kim Y, Kobayashi A, Sekido R , et al. Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 2006; 4 (6) e187
  • 65 Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc Natl Acad Sci U S A 2007; 104 (42) 16558-16563
  • 66 Bagheri-Fam S, Sim H, Bernard P , et al. Loss of Fgfr2 leads to partial XY sex reversal. Dev Biol 2008; 314 (1) 71-83
  • 67 Burgoyne P, Thornhill A. The genetic basis of XX–XY differences present before gonadal sex differentiation in mice. In: Reed K, Graves J, , eds. Sex Chromosomes and Sex-Determining Genes. Chur, Switzerland: Harwood Academic Publishers; 1993: 369-372
  • 68 Sekido R, Lovell-Badge R. Sex determination and SRY: down to a wink and a nudge?. Trends Genet 2009; 25 (1) 19-29
  • 69 Capel B, Albrecht KH, Washburn LL, Eicher EM. Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech Dev 1999; 84 (1–2) 127-131
  • 70 Cederroth CR, Pitetti JL, Papaioannou MD, Nef S. Genetic programs that regulate testicular and ovarian development. Mol Cell Endocrinol 2007; 265-266: 3-9
  • 71 Nef S, Schaad O, Stallings NR , et al. Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Dev Biol 2005; 287 (2) 361-377
  • 72 Small CL, Shima JE, Uzumcu M, Skinner MK, Griswold MD. Profiling gene expression during the differentiation and development of the murine embryonic gonad. Biol Reprod 2005; 72 (2) 492-501
  • 73 Beverdam A, Koopman P. Expression profiling of purified mouse gonadal somatic cells during the critical time window of sex determination reveals novel candidate genes for human sexual dysgenesis syndromes. Hum Mol Genet 2006; 15 (3) 417-431
  • 74 Chassot AA, Ranc F, Gregoire EP , et al. Activation of β-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum Mol Genet 2008; 17 (9) 1264-1277
  • 75 Kimura T, Nakamura T, Murayama K , et al. The stabilization of β-catenin leads to impaired primordial germ cell development via aberrant cell cycle progression. Dev Biol 2006; 300 (2) 545-553
  • 76 Jeays-Ward K, Hoyle C, Brennan J , et al. Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 2003; 130 (16) 3663-3670
  • 77 Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature 1999; 397 (6718) 405-409
  • 78 Heikkilä M, Prunskaite R, Naillat F , et al. The partial female to male sex reversal in Wnt-4-deficient females involves induced expression of testosterone biosynthetic genes and testosterone production, and depends on androgen action. Endocrinology 2005; 146 (9) 4016-4023
  • 79 Yao HH, Matzuk MM, Jorgez CJ , et al. Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn 2004; 230 (2) 210-215
  • 80 Biason-Lauber A, Konrad D, Navratil F, Schoenle EJA. A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46,XX woman. N Engl J Med 2004; 351 (8) 792-798
  • 81 Jeays-Ward K, Dandonneau M, Swain A. Wnt4 is required for proper male as well as female sexual development. Dev Biol 2004; 276 (2) 431-440
  • 82 Jordan BK, Shen JH, Olaso R, Ingraham HA, Vilain E. Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/β-catenin synergy. Proc Natl Acad Sci U S A 2003; 100 (19) 10866-10871
  • 83 Bernard P, Harley VR. Wnt4 action in gonadal development and sex determination. Int J Biochem Cell Biol 2007; 39 (1) 31-43
  • 84 Parma P, Radi O, Vidal V , et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 2006; 38 (11) 1304-1309
  • 85 Chassot AA, Gregoire EP, Magliano M, Lavery R, Chaboissier MC. Genetics of ovarian differentiation: Rspo1, a major player. Sex Dev 2008; 2 (4–5) 219-227
  • 86 Tomizuka K, Horikoshi K, Kitada R , et al. R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet 2008; 17 (9) 1278-1291
  • 87 Jordan BK, Mohammed M, Ching ST , et al. Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am J Hum Genet 2001; 68 (5) 1102-1109
  • 88 Maatouk DM, DiNapoli L, Alvers A, Parker KL, Taketo MM, Capel B. Stabilization of β-catenin in XY gonads causes male-to-female sex-reversal. Hum Mol Genet 2008; 17 (19) 2949-2955
  • 89 Tevosian SG, Manuylov NL. To beta or not to beta: canonical beta-catenin signaling pathway and ovarian development. Dev Dyn 2008; 237 (12) 3672-3680
  • 90 Liu CF, Bingham N, Parker K, Yao HH. Sex-specific roles of β-catenin in mouse gonadal development. Hum Mol Genet 2009; 18 (3) 405-417
  • 91 Pailhoux E, Vigier B, Chaffaux S , et al. A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet 2001; 29 (4) 453-458
  • 92 Crisponi L, Deiana M, Loi A , et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 2001; 27 (2) 159-166
  • 93 Schmidt D, Ovitt CE, Anlag K , et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 2004; 131 (4) 933-942
  • 94 Uda M, Ottolenghi C, Crisponi L , et al. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 2004; 13 (11) 1171-1181
  • 95 Ottolenghi C, Omari S, Garcia-Ortiz JE , et al. Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet 2005; 14 (14) 2053-2062
  • 96 Uhlenhaut NH, Jakob S, Anlag K , et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 2009; 139 (6) 1130-1142
  • 97 Ottolenghi C, Pelosi E, Tran J , et al. Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet 2007; 16 (23) 2795-2804
  • 98 Akiyama H, Lyons JP, Mori-Akiyama Y , et al. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev 2004; 18 (9) 1072-1087
  • 99 Bowles J, Knight D, Smith C , et al. Retinoid signaling determines germ cell fate in mice. Science 2006; 312 (5773) 596-600
  • 100 Kashimada K, Svingen T, Feng C-W , et al. Antagonistic regulation of Cyp26b1 by transcription factors SOX9/SF1 and FOXL2 during gonadal development in mice. FASEB J 2011; 25: 3561-3569
  • 101 Villagómez DAF, Parma P, Radi O , et al. Classical and molecular cytogenetics of disorders of sex development in domestic animals. Cytogenet Genome Res 2009; 126 (1–2) 110-131
  • 102 Mastromonaco GF, Houck ML. Bergfelt. Disorders of sexual development in wild and captive exotic animals. Sex Dev 2012; 6 (1–3) 84-95
  • 103 Meyers-Wallen VN. Gonadal and sex differentiation abnormalities of dogs and cats. Sex Dev 2012; 6 (1–3) 46-60
  • 104 Meyers-Wallen VN. Review and update: genomic and molecular advances in sex determination and differentiation in small animals. Reprod Domest Anim 2009; 44 (Suppl. 02) 40-46
  • 105 McElreavey K, Vilain E, Abbas N, Herskowitz I, Fellous M. A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proc Natl Acad Sci U S A 1993; 90 (8) 3368-3372
  • 106 Levilliers J, Quack B, Weissenbach J, Petit C. Exchange of terminal portions of X- and Y-chromosomal short arms in human XY females. Proc Natl Acad Sci U S A 1989; 86 (7) 2296-2300
  • 107 Page DC, Fisher EMC, McGillivray B, Brown LG. Additional deletion in sex-determining region of human Y chromosome resolves paradox of X,t(Y;22) female. Nature 1990; 346 (6281) 279-281
  • 108 Nakagome Y, Seki S, Fukutani K, Nagafuchi S, Nakahori Y, Tamura T. PCR detection of distal Yp sequences in an XX true hermaphrodite. Am J Med Genet 1991; 41 (1) 112-114
  • 109 Hawkins JR, Taylor A, Berta P, Levilliers J, Van der Auwera B, Goodfellow PN. Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal. Hum Genet 1992; 88 (4) 471-474
  • 110 Veitia R, Ion A, Barbaux S , et al. Mutations and sequence variants in the testis-determining region of the Y chromosome in individuals with a 46,XY female phenotype. Hum Genet 1997; 99 (5) 648-652
  • 111 Scherer G, Held M, Erdel M , et al. Three novel SRY mutations in XY gonadal dysgenesis and the enigma of XY gonadal dysgenesis cases without SRY mutations. Cytogenet Cell Genet 1998; 80 (1–4) 188-192
  • 112 Wagner T, Wirth J, Meyer J , et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 1994; 79 (6) 1111-1120
  • 113 Foster JW, Dominguez-Steglich MA, Guioli S , et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 1994; 372 (6506) 525-530
  • 114 Mansour S, Hall CM, Pembrey ME, Young ID. A clinical and genetic study of campomelic dysplasia. J Med Genet 1995; 32 (6) 415-420
  • 115 Huang BL, Wang S, Ning Y, Lamb AN, Bartley J. Autosomal XX sex reversal caused by duplication of SOX9. Am J Med Genet 1999; 87 (4) 349-353
  • 116 Zanaria E, Muscatelli F, Bardoni B , et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 1994; 372 (6507) 635-641
  • 117 Muscatelli F, Strom TM, Walker AP , et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 1994; 372 (6507) 672-676
  • 118 Bardoni B, Zanaria E, Guioli S , et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet 1994; 7 (4) 497-501
  • 119 Swain A, Narvaez V, Burgoyne P, Camerino G, Lovell-Badge R. Dax1 antagonizes Sry action in mammalian sex determination. Nature 1998; 391 (6669) 761-767
  • 120 Meeks JJ, Weiss J, Jameson JL. Dax1 is required for testis determination. Nat Genet 2003; 34 (1) 32-33
  • 121 Bouma GJ, Albrecht KH, Washburn LL, Recknagel AK, Churchill GA, Eicher EM. Gonadal sex reversal in mutant Dax1 XY mice: a failure to upregulate Sox9 in pre-Sertoli cells. Development 2005; 132 (13) 3045-3054
  • 122 Vaiman D, Pailhoux E. Mammalian sex reversal and intersexuality: deciphering the sex-determination cascade. Trends Genet 2000; 16 (11) 488-494
  • 123 Poth T, Breuer W, Walter B, Hecht W, Hermanns W. Disorders of sex development in the dog-Adoption of a new nomenclature and reclassification of reported cases. Anim Reprod Sci 2010; 121 (3–4) 197-207
  • 124 Fredga K, Gropp A, Winking H, Frank F. Fertile XX- and XY-type females in the wood lemming Myopus schisticolor . Nature 1976; 261 (5557) 225-227
  • 125 Fredga K. Aberrant chromosomal sex-determining mechanisms in mammals, with special reference to species with XY females. Philos Trans R Soc Lond B Biol Sci 1988; 322 (1208) 83-95
  • 126 Burgos M, Jiménez R, Díaz de la Guardia R. XY females in Microtus cabrerae (Rodentia, Microtidae): a case of possibly Y-linked sex reversal. Cytogenet Cell Genet 1988; 49 (4) 275-277
  • 127 Bianchi NO. Akodon sex reversed females: the never ending story. Cytogenet Genome Res 2002; 96 (1–4) 60-65
  • 128 Veyrunes F, Chevret P, Catalan J , et al. A novel sex determination system in a close relative of the house mouse. Proc Biol Sci 2010; 277 (1684) 1049-1056
  • 129 Foster JW, Graves JAM. An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc Natl Acad Sci U S A 1994; 91 (5) 1927-1931
  • 130 Barrionuevo F, Bagheri-Fam S, Klattig J , et al. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod 2006; 74 (1) 195-201
  • 131 Bishop CE, Whitworth DJ, Qin Y , et al. A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet 2000; 26 (4) 490-494
  • 132 Vidal VPI, Chaboissier MC, de Rooij DG, Schedl A. Sox9 induces testis development in XX transgenic mice. Nat Genet 2001; 28 (3) 216-217
  • 133 Polanco JC, Wilhelm D, Davidson TL, Knight D, Koopman P. Sox10 gain-of-function causes XX sex reversal in mice: implications for human 22q-linked disorders of sex development. Hum Mol Genet 2010; 19 (3) 506-516
  • 134 Sutton E, Hughes J, White S , et al. Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest 2011; 121 (1) 328-341
  • 135 Lavery R, Lardenois A, Ranc-Jianmotamedi F , et al. XY Sox9 embryonic loss-of-function mouse mutants show complete sex reversal and produce partially fertile XY oocytes. Dev Biol 2011; 354 (1) 111-122
  • 136 Pearlman A, Loke J, Le Caignec C , et al. Mutations in MAP3K1 cause 46,XY disorders of sex development and implicate a common signal transduction pathway in human testis determination. Am J Hum Genet 2010; 87 (6) 898-904
  • 137 Cui S, Ross A, Stallings N, Parker KL, Capel B, Quaggin SE. Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice. Development 2004; 131 (16) 4095-4105
  • 138 Birk OS, Casiano DE, Wassif CA , et al. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 2000; 403 (6772) 909-913
  • 139 Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 1999; 22 (2) 125-126
  • 140 Umehara F, Tate G, Itoh K , et al. A novel mutation of desert hedgehog in a patient with 46,XY partial gonadal dysgenesis accompanied by minifascicular neuropathy. Am J Hum Genet 2000; 67 (5) 1302-1305
  • 141 Canto P, Söderlund D, Reyes E, Méndez JP. Mutations in the desert hedgehog (DHH) gene in patients with 46,XY complete pure gonadal dysgenesis. J Clin Endocrinol Metab 2004; 89 (9) 4480-4483
  • 142 Raymond CS, Parker ED, Kettlewell JR , et al. A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators. Hum Mol Genet 1999; 8 (6) 989-996
  • 143 Klamt B, Koziell A, Poulat F , et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum Mol Genet 1998; 7 (4) 709-714
  • 144 Berta P, Hawkins JR, Sinclair AH , et al. Genetic evidence equating SRY and the testis-determining factor. Nature 1990; 348 (6300) 448-450
  • 145 Jäger RJ, Anvret M, Hall K, Scherer G. A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. Nature 1990; 348 (6300) 452-454
  • 146 Chaboissier MC, Kobayashi A, Vidal VI , et al. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 2004; 131 (9) 1891-1901
  • 147 Seeherunvong T, Perera EM, Bao Y , et al. 46,XX sex reversal with partial duplication of chromosome arm 22q. Am J Med Genet A 2004; 127A (2) 149-151