Informationen aus Orthodontie & Kieferorthopädie 2012; 44(03): 199-206
DOI: 10.1055/s-0032-1323751
Übersichtsartikel
© Georg Thieme Verlag KG Stuttgart · New York

Die initiale Phase der Mesialisierung eines unteren Molaren in einem patientenbezogenen Finite-Elemente-Modell

The Initial Phase of Mesialization of a Lower Molar in a Patient-Oriented Finite Element Model
B. Ludwig
1   Kieferorthopädische Fachpraxis, Traben-Trarbach
3   Poliklinik für Kieferorthopädie, Universität des Saarlandes, Homburg/Saar
,
A. Geringer
2   Lehrstuhl für Technische Mechanik, Universität des Saarlandes, Saarbrücken
,
B. Glasl
1   Kieferorthopädische Fachpraxis, Traben-Trarbach
,
S. Diebels
2   Lehrstuhl für Technische Mechanik, Universität des Saarlandes, Saarbrücken
,
J. Lisson
3   Poliklinik für Kieferorthopädie, Universität des Saarlandes, Homburg/Saar
,
T. Lietz
4   Zahnarzt, Neulingen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
18. Oktober 2012 (online)

Zusammenfassung

Zielsetzung:

Bei fehlenden Seitenzähnen ist der singuläre Lückenschluss durch Mesialisation der Molaren mithilfe skelettaler Verankerungen eine sehr häufige Indikation geworden. Angestrebt wird dabei die körperliche Translation eines Zahnes, von der man annimmt, dass in der Initialphase der Bewegung der im Parodont entstehende Druck gleichmäßig verteilt ist. Es war zu prüfen, ob mithilfe eines patientenbezogenen Finite-Elemente-Modells die optimalen biomechanischen Parameter bestimmt werden können.

Material und Methode:

Basierend auf dem CT-Bild eines Patienten wurde ein Finite-Elemente-Modell erstellt und zur Simulation der initialen Zahnbewegung bei der Mesialisation eines unteren Molars anhand von 4 Lastsituationen genutzt. Die nach mesial gerichtete Kraft betrug 1N. In der ersten Simulation erfolgte die Belastung nur von vestibulär im Bereich der Krone. In der zweiten Simulation wurde bilateral, vestibulär und oral im Bereich der Krone belastet. In der dritten Simulation erfolgte der Kraftansatz nur vestibulär in Höhe des Widerstandszentrums. In der vierten Simulation wurde die Kraft bilateral auf Höhe des Widerstandszentrums appliziert.

Ergebnisse:

In den ersten 3 Simulationen war der Druck im Parodont ungleichmäßig verteilt und lag deutlich über dem definierten Richtwert. Nur bei der vierten Simulation entstand ein annähernd gleichmäßig verteilter Druck, der im Bereich des Richtwertes lag und eine reine Translation bewirken könnte.

Schlussfolgerungen:

Das aus Patientendaten gewonnene Finite-Elemente-Modell kann dazu dienen, patienten- und therapiebezogene Kraftapplikationen zu definieren und unerwünschte Nebenwirkungen zu reduzieren.

Abstract

Objective:

In case of missing premolars and molars, space closure by mesialization of molars has become a very common indication. The aim is a bodily translation of the posterior tooth, which needs a biomechanically uniformly distributed pressure in the periodontium in the initial phase of tooth movement. It was necessary to determine whether a patient-specific finite element model could be used, to determine the optimal biomechanical parameters.

Materials and methods:

Based on the CT image of a patient, a finite element model to simulate the initial tooth movement in a lower molar mesialization was used and 4 different load situations were created. The mesially directed force was 1 N. In the first simulation, the load was only in the vestibular site of the crown. In the second simulation the force was applied bilateral of the crown. In the third simulation the buccal force was applied at the center of resistance. In the fourth simulation, the force was applied bilaterally at the level of the center of resistance.

Results:

In the first 3 simulations, the pressure was unevenly distributed in the periodontal tissues and was significantly higher than the defined benchmark. Only the fourth simulation resulted in a nearly evenly distributed pressure that was in the range of the standard value and could cause a pure translation.

Conclusions:

Patients’ specific data designing a finite element model can be used to define a patient as well as treatment-related force application and to reduce unwanted side effects.

 
  • Literatur

  • 1 Andersen KL, Mortensen HT, Pedersen EH et al. Determination of stress levels and profiles in the periodontal ligament by means of an improved three-dimensional finite element model for various types of orthodontic and natural force systems. J Biomed Eng 1991; 13: 293-303
  • 2 Biot M. Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 1955; 26: 182-185
  • 3 Bowen RM. Incompressible pourous media models by use of theory of mixture. Int J Eng Sci 1980; 18: 1129-1148
  • 4 Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res 2005; 84: 428-433
  • 5 Clement R, Schneider J, Brambs HJ et al. Quasi-automatic 3D finite element model generation for individual single-rooted teeth and periodontal ligament. Comput Methods Programs Biomed 2004; 73: 135-144
  • 6 Diedrich P. Kieferorthopädie II. München, Wien, Baltimore: Urban & Schwarzenberg; 2000
  • 7 Dorow C, Krstin N, Sander FG. Determination of the mechanical properties of the periodontal ligament in a uniaxial tensional experiment. J Orofac Orthop 2003; 64: 100-107
  • 8 Farah JW, Craig RG. Finite element stress analysis of a restored axisymmetric first molar. J Dent Res 1974; 53: 859-866
  • 9 Farah JW, Craig RG, Sikarskie DL. Photoelastic and finite element stress analysis of a restored axisymmetric first molar. J Biomech 1973; 6: 511-520
  • 10 Field C, Ichim I, Swain MV et al. Mechanical responses to orthodontic loading: a 3-dimensional finite element multi-tooth model. Am J Orthod Dentofacial Orthop 2009; 135: 174-181
  • 11 Fung YC. Biomechanics. New York: Springer; 1981
  • 12 Genna F, Annovazzi L, Bonesi C et al. On the experimental determination of some mechanical properties of porcine periodontal ligament. Meccanica 2008; 43: 55-73
  • 13 Geramy A. Initial stress produced in the periodontal membrane by orthodontic loads in the presence of varying loss of alveolar bone: a three-dimensional finite lement analysis. Eur J Orthod 2002; 24: 21-33
  • 14 Goel VK, Khera SC, Gurusami S et al. Effect of cavity depth on stresses in a restored tooth. J Prosthet Dent 1992; 67: 174-183
  • 15 Hood JA, Farah JW, Craig RG. Modification of stresses in alveolar bone induced by a tilted molar. J Prosthet Dent 1975; 34: 415-421
  • 16 Jost-Brinkmann PG, Tanne K, Sakuda M et al. A FEM study for the biomechanical comparison of labial and palatal force application on the upper incisors. Finite element method. Fortschr Kieferorthop 1993; 54: 76-82
  • 17 Kim T, Suh J, Kim N et al. Optimum conditions for parallel translation of maxillary anterior teeth under retraction force determined with the finite element method. Am J Orthod Dentofacial Orthop 2010; 137: 639-647
  • 18 Kojima Y, Fukui H. A numerical simulation of tooth movement by wire bending. Am J Orthod Dentofacial Orthop 2006; 130: 452-459
  • 19 Ludwig B, Glasl B, Kinzinger G et al. Skeletal Anchorage with Miniscrews for Singular Space Closure in the Molar and Premolar Region – Current Status, Biomechanics, Risks and Limitations. IOK 2009; 41: 117-127
  • 20 Ludwig B, Geringer A, Glasl B et al. DICOM-Daten als Basis für die FEM-Simulation zahnmedizinischer Fragestellungen. Inf Orthod Kieferorthop 2012; 44 (1): 23-29
  • 21 McGuinness NJ, Wilson AN, Jones ML et al. A stress analysis of the periodontal ligament under various orthodontic loadings. Eur J Orthod 1991; 13: 231-242
  • 22 Middleton J, Jones M, Wilson A. The role of the periodontal ligament in bone modeling: the initial development of a time-dependent finite element model. Am J Orthod Dentofacial Orthop 1996; 109: 155-162
  • 23 Miyakawa O. Mechanical studies on the dental bridges by the finite element method (2). – An idealized symmetrical bridge with a vertical load at the center of pontic – (author’s transl). Shika Rikogaku Zasshi 1976; 17: 278-286
  • 24 Miyakawa O. Mechanical studies on the dental bridges by the finite element method (3). – Behavior of a posterior bridge model under various loads – (author’s transl). Shika Rikogaku Zasshi 1976; 17: 287-296
  • 25 Miyakawa O. Mechanical studies on the dental bridges by the finite element method. (1) – An abutment tooth model – (author’s transl). Shika Rikogaku Zasshi 1976; 17: 269-277
  • 26 Nägerl H, Burstone CJ, Becker B et al. Centers of rotation with transverse forces: an experimental study. Am J Orthod Dentofacial Orthop 1991; 99: 337-345
  • 27 Nakajima A, Murata M, Tanaka E et al. Development of three-dimensional FE modeling system from the limited cone beam CT images for orthodontic tipping tooth movement. Dent Mater J 2007; 26: 882-891
  • 28 Poiate IA, de Vasconcellos AB, de Santana RB et al. Three-dimensional stress distribution in the human periodontal ligament in masticatory, parafunctional, and trauma loads: finite element analysis. J Periodontol 2009; 80: 1859-1867
  • 29 Poiate IA, Vasconcellos AB, Andueza A et al. Three dimensional finite element analyses of oral structures by computerized tomography. J Biosci Bioeng 2008; 106: 606-609
  • 30 Poppe M, Bourauel C, Jäger A. Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted teeth. A study of autopsy specimens and their conversion into finite element models. J Orofac Orthop 2002; 63: 358-370
  • 31 Rees JS, Jacobsen PH. Elastic modulus of the periodontal ligament. Biomaterials 1997; 18: 995-999
  • 32 Reimann S. Experimentelle und numerische Untersuchungen des biomechanischen Verhaltens von mehrwurzeligen Zähnen. Bonn: Rheinische Friedrich-Wilhelms-Universität, Mathematisch-Naturwissenschaftliche Fakultät; 2008
  • 33 Rudolph DJ, Willes PMG, Sameshima GT. A finite element model of apical force distribution from orthodontic tooth movement. Angle Orthod 2001; 71: 127-131
  • 34 Rygh P. Ultrastructural changes of the periodontal fibers and their attachment in rat molar periodontium incident to orthodontic tooth movement. Scand J Dent Res 1973; 81: 467-480
  • 35 Rygh P, Bowling K, Hovlandsdal L et al. Activation of the vascular system: a main mediator of periodontal fiber remodeling in orthodontic tooth movement. Am J Orthod 1986; 89: 453-468
  • 36 Schneider J, Geiger M, Sander FG. Numerical experiments on long-time orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2002; 121: 257-265
  • 37 Schroeder HE. Orale Strukturbiologie. Stuttgart: Georg Thieme Verlag; 1992
  • 38 Schwarz AM. Die lebenskundlichen (biologischen) Grundlagen der Kieferorthopädie. In: Schwarz AM. Lehrgang der Gebissregelung Band 2: Die Behandlung. Wien/Innsbruck: Urban & Schwarzenberg; 1953: 7-86
  • 39 Selna LG, Shillingburg Jr HT, Kerr PA. Finite element analysis of dental structures – axisymmetric and plane stress idealizations. J Biomed Mater Res 1975; 9: 237-252
  • 40 Shibata T, Botsis J, Bergomi M et al. Mechanical behavior of bovine periodontal ligament under tension-compression cyclic displacements. Eur J Oral Sci 2006; 114: 74-82
  • 41 Shinya K, Shinya A, Nakahara R et al. Characteristics of the tooth in the initial movement: the influence of the restraint site to the periodontal ligament and the alveolar bone. Open Dent J 2009; 3: 85-91
  • 42 Tanne K, Bantleon HP. Stress distribution in the periodontal ligament induced by orthodontic forces. Use of finite-element method. Inf Orthod Kieferorthop 1989; 21: 185-194
  • 43 Tanne K, Koenig HA, Burstone CJ. Moment to force ratios and the center of rotation. Am J Orthod Dentofacial Orthop 1988; 94: 426-431
  • 44 Tanne K, Sakuda M. Initial stress induced in the periodontal tissue at the time of the application of various types of orthodontic force: three-dimensional analysis by means of the finite element method. J Osaka Univ Dent Sch 1983; 23: 143-171
  • 45 Tanne K, Sakuda M, Burstone CJ. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod Dentofacial Orthop 1987; 92: 499-505
  • 46 Toms SR, Dakin GJ, Lemons JE et al. Quasi-linear viscoelastic behavior of the human periodontal ligament. J Biomech 2002; 35: 1411-1415
  • 47 van Driel WD, van Leeuwen EJ, Von den Hoff JW et al. Time-dependent mechanical behaviour of the periodontal ligament. Proc Inst Mech Eng H 2000; 214: 497-504
  • 48 Viecilli RF, Katona TR, Chen J et al. Three-dimensional mechanical environment of orthodontic tooth movement and root resorption. Am J Orthod Dentofacial Orthop 2008; 133 (791) e711-e726
  • 49 Vollmer D, Bourauel C, Maier K et al. Determination of the centre of resistance in an upper human canine and idealized tooth model. Eur J Orthod 1999; 21: 633-648
  • 50 Williams KR, Edmundson JT, Morgan G et al. Orthodontic movement of a canine into an adjoining extraction site. J Biomed Eng 1986; 8: 115-120
  • 51 Wills DJ, Picton DC, Davies WI. An investigation of the viscoelastic properties of the periodontium in monkeys. J Periodontal Res 1972; 7: 42-51
  • 52 Wilson AN, Middleton J, Jones ML et al. The finite element analysis of stress in the periodontal ligament when subject to vertical orthodontic forces. Br J Orthod 1994; 21: 161-167
  • 53 Zhao Z, Fan Y, Bai D et al. The adaptive response of periodontal ligament to orthodontic force loading – a combined biomechanical and biological study. Clin Biomech (Bristol, Avon) 2008; 23 (Suppl. 01) S59-S66
  • 54 Ziegler A, Keilig L, Kawarizadeh A et al. Numerical simulation of the biomechanical behaviour of multi-rooted teeth. Eur J Orthod 2005; 27: 333-339