Klin Padiatr 2013; 225(01): 29-33
DOI: 10.1055/s-0032-1321900
Case Report
© Georg Thieme Verlag KG Stuttgart · New York

A Premature Termination Mutation in a Patient with Lowe Syndrome without Congenital Cataracts: Dropping the “O” in OCRL

Eine verfrühte Stopp-Mutation bei einem Patienten mit Lowe-Syndrom ohne kongenitalen Katarakt: OCRL ohne “O”
S. M. Pasternack
1   Institute für Humangenetik, University of Bonn, Bonn, Germany
,
D. Böckenhauer
2   Department of Nephrology, Great Ormond Hospital for Children, London, United Kingdom
,
M. Refke
1   Institute für Humangenetik, University of Bonn, Bonn, Germany
,
V. Tasic
3   Department of Pediatric Nephrology, University Children’s Hospital, Skopje, Macedonia, The Former Yugoslav Republic
,
M. Draaken
1   Institute für Humangenetik, University of Bonn, Bonn, Germany
,
C. Conrad
4   Klinik für Kinder- und Jugendheilkunde, St. Elisabeth Krankenhaus, Neuwied, Germany
,
M. Born
5   Radiologische Klinik – FE Kinderradiologie -, Universität Bonn, Germany
,
R. C. Betz
1   Institute für Humangenetik, University of Bonn, Bonn, Germany
,
H. Reutter
1   Institute für Humangenetik, University of Bonn, Bonn, Germany
6   Zentrum für Kinderheilkunde, Abteilung für Neonatalogie, Universität Bonn, Germany
,
M. Ludwig
7   Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinik Bonn, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
22 August 2012 (online)

Abstract

Background:

The oculocerebrorenal syndrome of Lowe is an X-linked recessive disorder characterized by the triad of congenital cataracts, mental retardation and a renal proximal tubulopathy. Although severity of phenotype might vary, congenital cataracts are part of the definition of this rare disorder.

Patient and Methods:

We report a 13-year-old patient with the typical cerebrorenal phenotype of Lowe syndrome, that had remained undiagnosed due to absence of any ocular involvement. OCRL gene analysis was carried.

Results:

DNA analysis revealed a c.C760T (p.Gln199X) nonsense mutation in exon 8 expected to cause complete disruption of OCRL function. After sequencing the parents of the index patient and his maternal grandparents, this mutation turned out to be de novo in the mother. Furthermore, a silent variant (p.Arg35=) was identified in exon 2, that could also be identified in the mother and her 3 sisters, but not in the grandparents assuming germ cell mosaicism in either of the grandparents. RNA analysis from the patient’s lymphocytes revealed presence of full-length OCRL transcripts. Western blotting from lymphocyte samples failed to detect OCRL protein even in controls.

Conclusion:

Our findings extend the phenotypic spectrum caused by OCRL mutations and illustrate that there may be selective organ involvement in Lowe syndrome.

Zusammenfassung

Hintergrund:

Das Lowe-Syndrom ist eine X-chromosomal rezessive Erkrankung, die durch kongenitale Katarakt, mentale Retardierung und proximale Tubulopathie charakterisiert ist. Das Auftreten einer angeborenen Katarakt ist definitionsgemäß einKardinalsymptom dieser seltenen Erkrankung

Patient und Methodik:

Bei einem 13-jährigen Patienten mit dem typischen Phänotyp des Lowe-Syndromsdas aufgrund der fehlenden Augenbeteiligung nicht früher diagnostiziert wurde, führten wir eine OCRL –Gen-Analyse durch.

Ergebnisse:

Bei DNA-Analysen wurde eineStopp-Mutation in Exon 8 (c.C760T, p.Gln199X)identifiziert, die einen völligen Funktionsverlustdes OCRL-Proteins zur Folge haben sollte. EineSequenzanalyse der Eltern des Patienten sowieder maternalen Großeltern erbrachte den Hinweisauf eine de novo-Mutation bei der Mutter.Weiterhin identifizierten wir eine stille Variante(p.Arg35 = ) in Exon 2. Diese Variante konnten wirbei der Mutter und ihren 3 Schwestern, nichtaber in den Großeltern nachweisen, was auf einKeimzellmosaik bei einem der beidenGroßelternhindeutet. RNA aus Lymphozyten des Patientenbelegte das Vorliegen vollständiger OCRL -Transkripte.Mit dem Western-Blot mit Proben aus Lymphozyten konnten wir jedoch – selbst in Kontroll-Proben – kein OCRL-Protein nachweisen.

Schlussfolgerung:

Unsere Befunde erweiterndas phänotypische Spektrum dieser seltenen Erkrankungund machen deutlich, dass das Lowe-Syndrom mit einer selektiven Organbeteiligung einhergehen kann.

Supplementary Material:

 
  • References

  • 1 Althaus K, Najm J, Greinacher A. MYH9 related platelet disorders – often unknown and misdiagnosed. Klin Padiatr 2011; 223: 120-125
  • 2 Attree O, Olivos IM, Okabe I et al. The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 192; 358: 239-242
  • 3 Böckenhauer D, Bökenkamp A, van’t Hoff W et al. Renal phenotype in Lowe syndrome: A selective proximal tubular dysfunction. Clin J Am Soc Nephrol 2008; 3: 1430-1436
  • 4 Bökenkamp A, Böckenhauer D, Cheong HI et al. Dent-2 disease: a mild variant of Lowe syndrome. J Pediatr 2009; 155: 94-99
  • 5 Choudhury R, Diao A, Zhang F et al. Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 2005; 16: 3467-3479
  • 6 Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3: 285-298
  • 7 Cartegni L, Wang J, Zhu Z et al. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 2003; 31: 3568-3571
  • 8 Coon BG, Hernandez V, Madhivanan K et al. The Lowe syndrome protein OCRL1 is involved in primary cilia assembly. Hum Mol Genet 2012; 21: 1835-1847
  • 9 Dambournet D, Machicoane M, Chesneau L et al. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat Cell Biol 2011; 13: 981-988
  • 10 De Carvalho-Neto A, Ono SE, de Melo Cardoso G et al. Oculocerebrorenal syndrome of Lowe. Magnetic resonance findings in the first six years of life. Arq Neuropsiquiatr 2009; 67: 305-307
  • 11 Draaken M, Giesen CA, Kesselheim AL et al. Maternal de novo triple mosaicism for two single OCRL nucleotide substitutions (c.1736A>T, c.1736A>G) in a Lowe syndrome family. Hum Genet 2011; 129: 513-519
  • 12 El Kadhi KB, Roubinet C, Solinet S et al. The inositol 5-phosphatase dOCRL controls PI(4,5)P2 homeostasis and is necessary for cytokinesis. Curr Biol 2011; 21: 1074-1079
  • 13 Faucherre A, Desbois P, Satre V et al. Lowe syndrome protein OCRL1 interacts with Rac GTPase in the trans-Golgi network. Hum Mol Genet 2003; 12: 2449-2456
  • 14 Gropman A, Levin S, Yao L et al. Unusual renal features of Lowe syndrome in a mildly affected boy. Am J Med Genet 2000; 95: 461-466
  • 15 Hoopes Jr RR, Shrimpton AE, Knohl SJ et al. Dent disease with mutations in OCRL1. Am J Hum Genet 2005; 76: 260-267
  • 16 Hichri H, Rendu J, Monnier N et al. From Lowe syndrome to Dent disease: correlations between mutations of the OCRL1 gene and clinical and biochemical phenotypes. Hum Mutat 2011; 32: 379-388
  • 17 Kawano T, Indo Y, Nakazato H et al. Oculocerebrorenal syndrome of Lowe: three mutations in the OCRL1 gene derived from three patients with different phenotypes. Am J Med Genet 1998; 77: 348-355
  • 18 Lasne D, Baujat G, Mirault T et al. Bleeding disorders in Lowe syndrome patients: evidence for a link between OCRL mutations and primary haemostasis disorders. Brit J Haematol 2010; 150: 685-688
  • 19 Laube GF, Russell-Eggitt IM, van’t Hoff WG. Early proximal tubular dysfunction in Lowe’s syndrome. Arch Dis Child 2004; 89: 479-480
  • 20 Loi M. Lowe syndrome. Orphanet J Rare Dis 2006; 1: 16
  • 21 Lin T, Orrison BM, Leahey AM et al. Spectrum of mutations in the OCRL1 gene in the Lowe oculocerebrorenal syndrome. Am J Hum Genet 1997; 60: 1384-1388
  • 22 Nonnenmacher L, Langer T, Blessing H et al. Hereditary hyperferritinemia cataract syndrome: Clinical, genetic and laboratory findings in 5 families. Klin Padiatr 2011; 223: 346-351
  • 23 Picollo A, Pusch M. Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 2005; 436: 420-423
  • 24 Ramprasad VL, Thool A, Murugan S et al. Truncating mutation in the NHS gene: phenotypic heterogeneity of Nance-Horan syndrome in an Asian Indian family. Invest Ophthalmol Vis Sci 2005; 46: 17-23
  • 25 Raucher D, Stauffer T, Chen W et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 2000; 100: 221-228
  • 26 Suchy SF, Nussbaum RL. The deficiency of PiP2-5-phosphatase in Lowe syndrome affects actin polymerization. Am J Hum Genet 2002; 71: 1420-1427
  • 27 Tasic V, Lozanovski VJ, Korneti P et al. Clinical and laboratory features of Macedonian children with OCRL mutations. Pediatr Nephrol 2011; 26: 557-562
  • 28 Ungewickell A, Ward ME, Ungewickell E et al. The inositol polyphosphate 5-phosphatase Ocrl associates with endosomes that are partially coated with clathrin. Proc Natl Acad Sci USA 2004; 101: 13501-13506
  • 29 Utsch B, Bökenkamp A, Benz MR et al. Novel OCRL1 mutations in patients with the phenotype of Dent disease. Am J Kidney Dis 2006; 48: 942-954
  • 30 Zhang X, Jefferson AB, Auethavekiat V et al. The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-biphosphate 5-phosphatase. Proc Natl Acad Sci USA 1995; 92: 4853-4856