Handchir Mikrochir Plast Chir 2012; 44(04): 209-219
DOI: 10.1055/s-0032-1321890
Übersichtsarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Mikrovaskuläre Effekte des Verbrennungsplasma­transfers und therapeutische Optionen im Tiermodell

Microvascular Effects of Burn Plasma Transfer and Therapeutic Options in a Rat Model
J. F. Hernekamp
1   BG Unfallklinik Ludwigshafen, Klinik für Hand-, Plastische- und Rekonstruktive Chirurgie - Schwerbrandverletztenzentrum, Ludwigshafen
,
P. S. Harenberg
2   Surgery/Division of Plastic Surgery, Duke University Medical Center, ­Durham, United States
,
M. Lehnhardt
3   BG Unfallklinik Ludwigshafen, Klinik für Hand-, Plastische und Rekonstruktive Chirurgie, Schwerbrandverletztenzentrum, Klinik für Plastische Chirurgie an der Universität Heidelberg, Ludwigshafen
,
G. Germann
3   BG Unfallklinik Ludwigshafen, Klinik für Hand-, Plastische und Rekonstruktive Chirurgie, Schwerbrandverletztenzentrum, Klinik für Plastische Chirurgie an der Universität Heidelberg, Ludwigshafen
,
A. Walther
4   Katharinenhospital, Klinik für Anästhesie und operative Intensivmedizin, Stuttgart
,
T. Kremer
5   BGU Ludwigshafen, Klinik für Hand-, Plastische- und Rekonstruktive ­Chirurgie – Schwerbrandverletztenzentrum, Ludwigshafen
› Author Affiliations
Further Information

Publication History

eingereicht 21 August 2011

akzeptiert 11 July 2012

Publication Date:
29 August 2012 (online)

Zusammenfassung

Einleitung:

Thermische Verletzungen mit mehr als 20% verbrannter Körperoberfläche (vKOF) führen zusätzlich zu den lokalen Gewebezerstörungen zu einem systemischen Schock mit generalisierter Ödembildung. Dieser als Verbrennungskrankheit bezeichnete Zustand wird durch immunmodulative Mediatoren hervorgerufen, deren individuelle Bedeutung aber noch nicht abschließend beurteilt werden kann. Wir stellen ein experimentelles Modell vor, bei dem Plasma verbrannter Tiere (Verbrennungsplasma) in gesunde Tiere übertragen wird, um hier eine Verbrennungskrankheit auszulösen.

Material und Methoden:

Die systemische Ödem­bildung wird mittels Extravasation von fluore­szenzmarkiertem Albumin in Mesenterialvenolen von Wistarratten gemessen. Zusätzlich werden Leukozyten-Endothel Interaktionen („Leukozyten-Rolling und Sticking“) untersucht.

Ergebnisse:

Das systemische Kapillarleck wird ebenso durch ein direktes thermisches Trauma wie durch die Infusion von Verbrennungsplasma induziert. Dies ist auch noch nach deutlicher Plasmaverdünnung (1% in Ringerlaktat) der Fall. Zusätzlich bewirkt eine topische Therapie der verbrannten Spendertiere mit Ceriumnitrat eine signifikante Reduktion der Plasmaextravasation im Empfänger. Außerdem kann die systemische antioxidative Therapie des Empfängers mit hochdosiertem Vitamin C die Ausprägung des Kapillarlecks reduzieren. Leukozyten-Endothel-Interaktionen werden jeweils nicht signifikant beeinflusst.

Schlussfolgerung:

Zusammengefasst wurde erstmals ein verlässliches Modell der Verbrennungskrankheit etabliert, das mediator-unabhängige Effekte eliminiert. Zusätzlich wurde für die antioxidative Therapie mit hochdosiertem Vitamin C und für die topische Therapie mit Ceriumnitrat gezeigt, dass beide das systemische ­Kapillarleck positiv beeinflussen und daher bereits kurzfristig in die Therapiealgorithmen integriert werden könnten.

Abstract

Introduction:

Thermal injuries with more than 20% of burned body surface area (BSA) lead to systemic shock with generalised oedema in addition to local tissue destruction. This condition, known as burn injury, is caused by immunmodulative mediators whose individual significance is not known in detail. We present an experimental model where plasma of burned animals (burn plasma) is transmitted to healthy animals, to trigger burn iniury without performing direct burn trauma.

Material and Methods:

The systemic oedema is measured by extravasation of fluorescent albumin in mesenterial venules of Wistar rats. In addition, leukocyte-endothelial interactions (“leukocyte rolling and sticking”) is examined.

Results:

The systemic capillary leak is induced by both direct thermal trauma as well as by infusion of burn plasma. This is evident even after plasma dilution (1% in Ringer’s lactate) of the burn plasma. In addition, topical therapy for burned animals (donors) with cerium nitrate led to a significant reduction of plasma extravasation in receiver animals. In addition, systemic antioxidant therapy with high-dose vitamin C of receiver animals, led to a significant reduction of the capillary leak. Leukocyte-endothelial interactions are not significantly affected in either case.

Conclusion:

In summary, for the first time a reliable model of burn injury has been established, which eliminates mediator-independent effects. In addition, our studies show that antioxidant therapy with high doses of vitamin C and topical treatment with cerium nitrate both reduce the systemic capillary leak in receiver animals. Their positive influence could therefore soon be integrated in clinical treatment algorithms.

 
  • Literatur

  • 1 Mann EA, Baun MM, Meininger JC et al. Comparison of Mortality Associated With Sepsis in the Burn, Trauma, and General Intensive Care Unit Patient: A Systematic Review of the Literature. Shock 2012; 37: 4-16
  • 2 Horton JW, Maass DL, White DJ et al. Effects of burn serum on myocardial inflammation and function. Shock 2004; 22: 438-445
  • 3 Maass DL, Hybki DP, White J et al. The time course of cardiac NF-kappaB activation and TNF-alpha secretion by cardiac myocytes after burn injury: contribution to burn-related cardiac contractile dysfunction. Shock 2002; 17: 293-299
  • 4 Maass DL, White J, Horton JW. IL-1beta and IL-6 act synergistically with TNF-alpha to alter cardiac contractile function after burn trauma. Shock 2002; 18: 360-366
  • 5 Carlson DL, Lightfoot E, Bryant DD et al. Burn plasma mediates cardiac myocyte apoptosis via endotoxin. American journal of physiology. Heart and circulatory physiology 2002; 282: 1907-1914
  • 6 Lightfoot E, Horton J, Maass D et al. Major burn trauma in rats promotes cardiac and gastrointestinal apoptosis. Shock 1999; 11 (No 1) 29-34
  • 7 Jeschke MG, Micak RP, Finnerty CC et al. Changes in liver function and size after a severe thermal injury. Shock 2007; 28: 172-177
  • 8 Jeschke MG, Low J, Spies M et al. Cell proliferation, apoptosis, NF-kappaB expression, enzyme, protein, and weight changes in livers of burned rats. American journal of physiology. Gastrointestinal and liver physiology 2001; 280: 1314-1320
  • 9 Ramzy PI, Wolf S, Irtun O et al. Gut epithelial apoptosis after severe burn: effects of gut hypoperfusion. J Am Coll Surg 2000; 190: 281-287
  • 10 Yasuhara S, Perez M, Kanakubo E et al. Skeletal muscle apoptosis after burns is associated with activation of proapoptotic signals. American journal of physiology. Endocrinology and metabolism 2000; 279: 1114-1121
  • 11 Yasuhara S, Kaneki M, Sugita H et al. Adipocyte apoptosis after burn injury is associated with altered fat metabolism. Journal of burn care & research 2006; 27: 367-376
  • 12 Goebel A, Kavanagh E, Lyons A et al. Injury induces deficient interleukin-12 production, but interleukin-12 therapy after injury restores resistance to infection. Ann Surg 2000; 231: 253-261
  • 13 Kelly JL, Lyons A, Soberg CC et al. Anti-interleukin-10 antibody restores burn-induced defects in T-cell function. Surgery 1997; 122: 146-152
  • 14 Yeh FL, Lin WL, Shen HD. Changes in circulating levels of an anti-inflammatory cytokine interleukin 10 in burned patients. Burns 2000; 26: 454-459
  • 15 Gamelli RL, He LK, Liu H. Marrow granulocyte-macrophage progenitor cell response to burn injury as modified by endotoxin and indomethacin. The Journal of Trauma 1994; 37: 339-346
  • 16 Kremer T, Abé D, Weihrauch M et al. Burn plasma transfer induces burn edema in healthy rats. Shock 2008; 30: 394-400
  • 17 Kremer T, Hernekamp F, Riedel K et al. Topical application of cerium nitrate prevents burn edema after burn plasma transfer. Microvascular research 2009; 78: 425-431
  • 18 Kremer T, Harenberg P, Hernekamp F et al. High-dose vitamin C treatment reduces capillary leakage after burn plasma transfer in rats. Journal of burn care & Research 2010; 31: 470-479
  • 19 Horan PK, Melnicoff MJ, Jensen BD et al. Fluorescent cell labeling for in vivo and in vitro cell tracking. Methods Cell Biol 1990; 33: 469-490
  • 20 Huang Q, Xu W, Ustinova E et al. Myosin light chain kinase-dependent microvascular hyperpermeability in thermal injury. Shock 2003; 20: 363-368
  • 21 Korompai FL, Yuan SY. Ventral burn in rats: an experimental model for intravital microscopic study of microcirculation. Burns 2003; 28: 321-327
  • 22 Walker HL, Mason AD. A standard animal burn. The Journal of Trauma 1968; 8: 1049-1051
  • 23 Cope O, Moore FD. The redistribution of body water and the fluid therapy of the burned patient. Annals of Surgery 1947; 126: 1010-1045
  • 24 Haynes BW. The history of burn care. In: Boswick JAJ. (ed.). The Art and Science of Burn Care. Rockville, MD: Aspen; 1987: 3-9
  • 25 Monafo WW, Tandon S, Ayvazian VH et al. Cerium nitrate: a new topical antiseptic for extensive burns. Surgery 1976; 80: 465-473
  • 26 Allgower M, Schoenenberger GA, Sparkes BG. Burning the largest immune organ. Burns 1995; 21 (Suppl. 01) S7-S47
  • 27 Allgöwer M. Toxicity of burned mouse skin in relation to burn temperature. Surg Forum 1963; 14: 37-39
  • 28 Antonacci AC, Good RA, Gupta S. T-cell subpopulations following thermal injury. Surgery, gynecology & obstetrics 1982; 155: 1-8
  • 29 Arturson G. Neutrophil granulocyte functions in severely burned patients. Burns 1985; 11: 309-319
  • 30 Boeckx W, Blondeel PN, Vandersteen K et al. Effect of cerium nitrate-silver sulphadiazine on deep dermal burns: a histological hypothesis. Burns 1992; 18: 456-462
  • 31 Attof R, Rachid A, Magnin C et al. Methemoglobinemia by cerium nitrate poisoning. Burns 2006; 32: 1060-1061
  • 32 Berger MM. Antioxidant Micronutrients in Major Trauma and Burns: Evidence and Practice. Nutrition in Clinical Practice 2006; 21: 438-449
  • 33 Berger MM, Soguel L, Shenkin A et al. Influence of early antioxidant supplements on clinical evolution and organ function in critically ill cardiac surgery, major trauma, and subarachnoid hemorrhage patients. Critical Care 2008; 12: R101
  • 34 Nguyen TT, Cox CS, Traber D et al. Free Radical Activity Loss of Plasma Antioxidants, Vitamin E, and Sulfhydryl Groups in Patients with burns: The 1993 Moyer award. J of Burns Care and Rehabilitation 1993; 14: 602-609
  • 35 Dubick MA, Williams C, Elgjo GI et al. High-dose vitamin C infusion reduces fluid requirements in the resuscitation of burn-injured sheep. Shock 2005; 24: 139-144
  • 36 Matsuda T, Tanaka H, Shimazaki S et al. High-dose vitamin C therapy for extensive deep dermal burns. Burns 1992; 18: 127-131
  • 37 Matsuda T, Tanaka H, Reyes H et al. Antioxidant Therapy Using High Dose Vitamin C: Reduction of Postburn Resuscitation Fluid Volume Requirements. World journal of Surg 1995; 19: 287-291
  • 38 Tanaka H. Regarding the efficacy of postburn vitamin C infusions on edema formation. J of Burns Care and Rehabilitation 1999; 20: 437-438
  • 39 Matsuda T, Tanaka H, Williams S et al. Reduced fluid volume requirement for resuscitation of third-degree burns with high-dose vitamin C. J of Burns Care and Rehabilitation 1991; 12: 525-532
  • 40 Tanaka H, Hanumadass M, Matsuda H et al. Hemodynamic effects of delayed initiation of antioxidant therapy (beginning two hours after burn) in extensive third-degree burns. J of Burns Care and Rehabilitation 1995; 16: 610-615
  • 41 Matsuda T, Tanaka H, Hanumadass M et al. Effects of high-dose vitamin C administration on postburn microvascular fluid and protein flux. J of Burns Care and Rehabilitation 1992; 13: 560-566
  • 42 Endo S, Inada K, Yamada J et al. Plasma tumour necrosis factor-α (TNF-α) levels in patients with burns. Burns 1993; 19: 124-127
  • 43 Sparkes B. immunological responses to thermal injury. Burns 1997; 23: 106
  • 44 Zhang B, Huang YH, Chen Y et al. Plasma tumor necrosis factor-alpha, its soluble receptors and interleukin-1beta levels in critically burned patients. Burns 1998; 24: 599-603
  • 45 Arturson G. Pathophysiology of the burn wound and pharmacological treatment. The Rudi Hermans Lecture 1995. Burns 1996; 22: 255-274
  • 46 Cioffi WG, Burleson DG, Pruitt BA. Leukocyte responses to injury. Archives of surgery 1993; 128: 1260-1267
  • 47 Walther A, Weihrauch M, Schmidt W et al. Leukocyte-independent plasma extravasation during endotoxemia. Crit Care Med 2000; 28: 2943-2948
  • 48 Czabanka M, Peter C, Martin E et al. Microcirculatory endothelial dysfunction during endotoxemia – insights into pathophysiology, pathologic mechanisms and clinical relevance. Current vascular pharmacology 2007; 5: 266-275
  • 49 Eski M, Deveci M, Celikoz B et al. Treatment with cerium nitrate bathing modulate systemic leukocyte activation following burn injury: an experimental study in rat cremaster muscle flap. Burns 2001; 27: 739-746
  • 50 Cetinkale O, Senel O, Bulan R. The effect of antioxidant therapy on cell-mediated immunity following burn injury in an animal model. Burns 1999; 25: 113-118
  • 51 Chen XL, Xia Z, Wie D et al. Expression and regulation of vascular cell adhesion molecule-1 in human umbilical vein endothelial cells induced by sera from severely burned patients. Crit Care Med 2004; 32: 77-82
  • 52 Lehr HA, Frei B, Arfors KE. Vitamin C prevents cigarette smoke-induced leukocyte aggregation and adhesion to endothelium in vivo. Proc Natl Acad Sci 1994; 91: 7688-7692
  • 53 Valenti LM, Mathieu J, Chancerelle Y et al. High levels of endogenous nitric oxide produced after burn injury in rats arrest activated T lymphocytes in the first G1 phase of the cell cycle and then induce their apoptosis. Experimental Cell Research 2005; 306: 150-167