Semin Reprod Med 2012; 30(04): 323-334
DOI: 10.1055/s-0032-1320013
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Embryo Manipulation and Imprinting

Dennis E. Marchesi
1   Department of Obstetrics and Gynecology, North Shore University Hospital – LIJ Health System, Manhasset, New York
,
Jie Qiao
2   Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
,
Huai L. Feng
2   Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
3   Departments of Laboratory Medicine, New York Hospital Queens, Weill Medical College of Cornell University, Flushing, New York
4   Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, Texas
5   Reprobiotech, NHP, New York, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
27 June 2012 (online)

Abstract

As the use of assisted reproductive technologies (ART) continues to rise worldwide, it remains of the upmost importance to maintain the safety of those techniques used in ART. Many of these practices are unique to this discipline; as such, it becomes difficult to assess the true risks that the potential offspring may be subjected to under this type of treatment. Removal of oocytes from a woman's body during an in vitro fertilization (IVF) cycle offers an increased opportunity for routine cellular processes to go awry. Specifically, epigenetic modifications and imprinting diseases are rare among the general population; however, although their incidence among IVF-conceived children is also rare, their frequency in this population remains elevated compared with universal rates. Recent investigations have directly attributed their occurrences to the use of ART and IVF to achieve a successful pregnancy. This review discusses the major cellular manipulations of a typical IVF cycle to assess the potential risks versus the reported risks. These manipulations include preimplantation genetic diagnosis and screening, intracytoplasmic sperm injection, ooplasmic transfer, embryo culture, in vitro maturation, and cryopreservation. Oocyte and embryo handling is a delicate part of the IVF process that continues to improve. The safety of those potential improvements is also discussed.

 
  • References

  • 1 Wu Ct, Morris JR. Genes, genetics, and epigenetics: a correspondence. Science 2001; 293 (5532) 1103-1105
  • 2 Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med 2009; 27 (5) 351-357
  • 3 Santos F, Dean W. Epigenetic reprogramming during early development in mammals. Reproduction 2004; 127 (6) 643-651
  • 4 Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet 2005; 14 (Spec No 1) R47-R58
  • 5 Kiefer JC. Epigenetics in development. Dev Dyn 2007; 236 (4) 1144-1156
  • 6 Koerner MV, Barlow DP. Genomic imprinting—an epigenetic gene-regulatory model. Curr Opin Genet Dev 2010; 20 (2) 164-170
  • 7 Paoloni-Giacobino A. Implications of reproductive technologies for birth and developmental outcomes: imprinting defects and beyond. Expert Rev Mol Med 2006; 8 (12) 1-14
  • 8 Lawrence LT, Moley KH. Epigenetics and assisted reproductive technologies: human imprinting syndromes. Semin Reprod Med 2008; 26 (2) 143-152
  • 9 Dean W, Lucifero D, Santos F. DNA methylation in mammalian development and disease. Birth Defects Res C Embryo Today 2005; 75 (2) 98-111
  • 10 Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33 (Suppl) 245-254
  • 11 Paoloni-Giacobino A. Epigenetics in reproductive medicine. Pediatr Res 2007; 61 (5 Pt 2) 51R-57R
  • 12 Qiao J, Chen Y, Yan LY, Yan J, Liu P, Sun QY. Changes in histone methylation during human oocyte maturation and IVF- or ICSI-derived embryo development. Fertil Steril 2010; 93 (5) 1628-1636
  • 13 Bromfield J, Messamore W, Albertini DF. Epigenetic regulation during mammalian oogenesis. Reprod Fertil Dev 2008; 20 (1) 74-80
  • 14 Thompson JR, Williams CJ. Genomic imprinting and assisted reproductive technology: connections and potential risks. Semin Reprod Med 2005; 23 (3) 285-295
  • 15 Gardner DK, Lane M. Ex vivo early embryo development and effects on gene expression and imprinting. Reprod Fertil Dev 2005; 17 (3) 361-370
  • 16 Fulka H, Mrazek M, Tepla O, Fulka Jr J. DNA methylation pattern in human zygotes and developing embryos. Reproduction 2004; 128 (6) 703-708
  • 17 Marques CJ, Francisco T, Sousa S, Carvalho F, Barros A, Sousa M. Methylation defects of imprinted genes in human testicular spermatozoa. Fertil Steril 2010; 94 (2) 585-594
  • 18 Kobayashi H, Hiura H, John RM , et al. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur J Hum Genet 2009; 17 (12) 1582-1591
  • 19 Marques CJ, Costa P, Vaz B , et al. Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod 2008; 14 (2) 67-74
  • 20 Lucifero D, Chaillet JR, Trasler JM. Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum Reprod Update 2004; 10 (1) 3-18
  • 21 Young LE, Fernandes K, McEvoy TG , et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet 2001; 27 (2) 153-154
  • 22 Delaval K, Wagschal A, Feil R. Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays 2006; 28 (5) 453-459
  • 23 Bourc'his D, Le Bourhis D, Patin D , et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol 2001; 11 (19) 1542-1546
  • 24 Hou J, Liu L, Lei TH, Cui XH, An XR, Chen YF. Genomic DNA methylation patterns in bovine preimplantation embryos derived from in vitro fertilization. Sci China C Life Sci 2007; 50 (1) 56-61
  • 25 Wang S, Cowan CA, Chipperfield H, Powers RD. Gene expression in the preimplantation embryo: in-vitro developmental changes. Reprod Biomed Online 2005; 10 (5) 607-616
  • 26 Liang XW, Zhu JQ, Miao YL , et al. Loss of methylation imprint of Snrpn in postovulatory aging mouse oocyte. Biochem Biophys Res Commun 2008; 371 (1) 16-21
  • 27 Suzuki Jr J, Therrien J, Filion F, Lefebvre R, Goff AK, Smith LC. In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle. BMC Dev Biol 2009; 9: 9-21
  • 28 Fauque P, Jouannet P, Lesaffre C , et al. Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos. BMC Dev Biol 2007; 7: 116-134
  • 29 Li T, Vu TH, Ulaner GA , et al. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol Hum Reprod 2005; 11 (9) 631-640
  • 30 Bird AP, Wolffe AP. Methylation-induced repression—belts, braces, and chromatin. Cell 1999; 99 (5) 451-454
  • 31 Geuns E, Hilven P, Van Steirteghem A, Liebaers I, De Rycke M. Methylation analysis of KvDMR1 in human oocytes. J Med Genet 2007; 44 (2) 144-147
  • 32 Gomes MV, Huber J, Ferriani RA, Amaral Neto AM, Ramos ES. Abnormal methylation at the KvDMR1 imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol Hum Reprod 2009; 15 (8) 471-477
  • 33 Dodge JE, Kang YK, Beppu H, Lei H, Li E. Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 2004; 24 (6) 2478-2486
  • 34 King JL, Yang B, Sparks AET, Mains LM, Murray JC, Van Voorhis BJ. Skewed X inactivation and IVF-conceived infants. Reprod Biomed Online 2010; 20 (5) 660-663
  • 35 Khoueiry R, Ibala-Rhomdane S, Méry L , et al. Dynamic CpG methylation of the KCNQ1OT1 gene during maturation of human oocytes. J Med Genet 2008; 45 (9) 583-588
  • 36 Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MRW. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 2010; 19 (1) 36-51
  • 37 Zechner U, Pliushch G, Schneider E , et al. Quantitative methylation analysis of developmentally important genes in human pregnancy losses after ART and spontaneous conception. Mol Hum Reprod 2010; 16 (9) 704-713
  • 38 Tierling S, Souren NY, Gries J , et al. Assisted reproductive technologies do not enhance the variability of DNA methylation imprints in human. J Med Genet 2010; 47 (6) 371-376
  • 39 Katari S, Turan N, Bibikova M , et al. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet 2009; 18 (20) 3769-3778
  • 40 Butler MG. Genomic imprinting disorders in humans: a mini-review. J Assist Reprod Genet 2009; 26 (9-10) 477-486
  • 41 Lebedev IN, Puzyrev VP. Epigenetic perspectives of safety in assisted reproductive technologies [in Russian]. Genetika 2007; 43 (9) 1157-1171
  • 42 Amor DJ, Halliday J. A review of known imprinting syndromes and their association with assisted reproduction technologies. Hum Reprod 2008; 23 (12) 2826-2834
  • 43 Edwards RG, Ludwig M. Are major defects in children conceived in vitro due to innate problems in patients or to induced genetic damage?. Reprod Biomed Online 2003; 7 (2) 131-138
  • 44 Hansen M, Bower C, Milne E, de Klerk N, Kurinczuk JJ. Assisted reproductive technologies and the risk of birth defects—a systematic review. Hum Reprod 2005; 20 (2) 328-338
  • 45 Wilkins-Haug L. Assisted reproductive technology, congenital malformations, and epigenetic disease. Clin Obstet Gynecol 2008; 51 (1) 96-105
  • 46 Laprise SL. Implications of epigenetics and genomic imprinting in assisted reproductive technologies. Mol Reprod Dev 2009; 76 (11) 1006-1018
  • 47 Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril 2009; 91 (2) 305-315
  • 48 Fortunato A, Tosti E. The impact of in vitro fertilization on health of the children: an update. Eur J Obstet Gynecol Reprod Biol 2011; 154 (2) 125-129
  • 49 Le Bouc Y, Rossignol S, Azzi S, Steunou V, Netchine I, Gicquel C. Epigenetics, genomic imprinting and assisted reproductive technology. Ann Endocrinol (Paris) 2010; 71 (3) 237-238
  • 50 Wennerholm UB, Bergh C, Hamberger L , et al. Incidence of congenital malformations in children born after ICSI. Hum Reprod 2000; 15 (4) 944-948
  • 51 Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med 2002; 346 (10) 725-730
  • 52 Kim JW, Lee WS, Yoon TK , et al. Chromosomal abnormalities in spontaneous abortion after assisted reproductive treatment. BMC Med Genet 2010; 11: 153-158
  • 53 Strawn Jr EY, Bick D, Swanson A. Is it the patient or the IVF? Beckwith-Wiedemann syndrome in both spontaneous and assisted reproductive conceptions. Fertil Steril 2010; 94: 754.e1-754 (.e2)
  • 54 Handyside AH, Kontogianni EH, Hardy K, Winston RML. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 1990; 344 (6268) 768-770
  • 55 Harper JC, Wilton L, Traeger-Synodinos J , et al. The ESHRE PGD Consortium: 10 years of data collection. Hum Reprod Update 2012; 18 (3) 234-247
  • 56 Munné S, Wells D, Cohen J. Technology requirements for preimplantation genetic diagnosis to improve assisted reproduction outcomes. Fertil Steril 2010; 94 (2) 408-430
  • 57 Ledbetter DH. Chaos in the embryo. Nat Med 2009; 15 (5) 490-491
  • 58 Vanneste E, Voet T, Le Caignec C , et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med 2009; 15 (5) 577-583
  • 59 Nekkebroeck J, Bonduelle M, Desmyttere S, Van den Broeck W, Ponjaert-Kristoffersen I. Mental and psychomotor development of 2-year-old children born after preimplantation genetic diagnosis/screening. Hum Reprod 2008; 23 (7) 1560-1566
  • 60 Staessen C, Verpoest W, Donoso P , et al. Preimplantation genetic screening does not improve delivery rate in women under the age of 36 following single-embryo transfer. Hum Reprod 2008; 23 (12) 2818-2825
  • 61 Goossens V, De Rycke M, De Vos A , et al. Diagnostic efficiency, embryonic development and clinical outcome after the biopsy of one or two blastomeres for preimplantation genetic diagnosis. Hum Reprod 2008; 23 (3) 481-492
  • 62 Gutiérrez-Mateo C, Benet J, Wells D , et al. Aneuploidy study of human oocytes first polar body comparative genomic hybridization and metaphase II fluorescence in situ hybridization analysis. Hum Reprod 2004; 19 (12) 2859-2868
  • 63 Cohen J, Wells D, Munné S. Removal of 2 cells from cleavage stage embryos is likely to reduce the efficacy of chromosomal tests that are used to enhance implantation rates. Fertil Steril 2007; 87 (3) 496-503
  • 64 De Vos A, Van Steirteghem A. Aspects of biopsy procedures prior to preimplantation genetic diagnosis. Prenat Diagn 2001; 21 (9) 767-780
  • 65 Wang WH, Kaskar K, Ren Y , et al. Comparison of development and implantation of human embryos biopsied with two different methods: aspiration and displacement. Fertil Steril 2009; 92 (2) 536-540
  • 66 Terada Y, Ugajin T, Hasegawa H, Nabeshima H, Yaegashi N. Different embryonic development after blastomere biopsy for preimplantation genetic diagnosis, observed by time-lapse imaging. Fertil Steril 2009; 92 (4) 1470-1471
  • 67 Munné S, Gianaroli L, Tur-Kaspa I , et al. Substandard application of preimplantation genetic screening may interfere with its clinical success. Fertil Steril 2007; 88 (4) 781-784
  • 68 Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 2004; 303 (5658) 644-649
  • 69 Mastenbroek S, Twisk M, van Echten-Arends J , et al. In vitro fertilization with preimplantation genetic screening. N Engl J Med 2007; 357 (1) 9-17
  • 70 Duncan FE, Stein P, Schultz RM. The effect of embryo biopsy on gene expression and development in the preimplantation mouse embryo. Fert Steril 2009; 91: 1462-1465
  • 71 Duncan FE, Stein P, Williams CJ, Schultz RM. The effect of blastomere biopsy on preimplantation mouse embryo development and global gene expression. Fertil Steril 2009; 91 (4, Suppl) 1462-1465
  • 72 Yu Y, Wu J, Fan Y , et al. Evaluation of blastomere biopsy using a mouse model indicates the potential high risk of neurodegenerative disorders in the offspring. Mol Cell Proteomics 2009; 8 (7) 1490-1500
  • 73 Cox GF, Bürger J, Lip V , et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 2002; 71 (1) 162-164
  • 74 Neelanjana M, Sabaratnam A. Malignant conditions in children born after assisted reproductive technology. Obstet Gynecol Surv 2008; 63 (10) 669-676
  • 75 Palermo GD, Neri QV, Takeuchi T, Squires J, Moy F, Rosenwaks Z. Genetic and epigenetic characteristics of ICSI children. Reprod Biomed Online 2008; 17 (6) 820-833
  • 76 Price TM, Murphy SK, Younglai EV. Perspectives: the possible influence of assisted reproductive technologies on transgenerational reproductive effects of environmental endocrine disruptors. Toxicol Sci 2007; 96 (2) 218-226
  • 77 Avendaño C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril 2010; 94 (2) 549-557
  • 78 Woldringh GH, Besselink DE, Tillema AHJ, Hendriks JCM, Kremer JAM. Karyotyping, congenital anomalies and follow-up of children after intracytoplasmic sperm injection with non-ejaculated sperm: a systematic review. Hum Reprod Update 2010; 16 (1) 12-19
  • 79 Alukal JP, Lamb DJ. Intracytoplasmic sperm injection (ICSI)—what are the risks?. Urol Clin North Am 2008; 35 (2) 277-288 , ix–x
  • 80 Sutcliffe AG, Manning JT, Katalanic A , et al. Perturbations in finger length and digit ratio (2D:4D) in ICSI children. Reprod Biomed Online 2010; 20 (1) 138-143
  • 81 Fulka H, Fulka Jr J. No differences in the DNA methylation pattern in mouse zygotes produced in vivo, in vitro, or by intracytoplasmic sperm injection. Fertil Steril 2006; 86 (5) 1534-1536
  • 82 Rosenwaks Z, Bendikson K. Further evidence of the safety of assisted reproductive technologies. Proc Natl Acad Sci U S A 2007; 104 (14) 5709-5710
  • 83 Santos F, Hyslop L, Stojkovic P , et al. Evaluation of epigenetic marks in human embryos derived from IVF and ICSI. Hum Reprod 2010; 25 (9) 2387-2395
  • 84 Gordon JW, Ruddle FH. Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 1981; 214 (4526) 1244-1246
  • 85 Perry ACF, Wakayama T, Kishikawa H , et al. Mammalian transgenesis by intracytoplasmic sperm injection. Science 1999; 284 (5417) 1180-1183
  • 86 Chan AWS, Luetjens CM, Dominko T , et al. Foreign DNA transmission by ICSI: injection of spermatozoa bound with exogenous DNA results in embryonic GFP expression and live rhesus monkey births. Mol Hum Reprod 2000; 6 (1) 26-33
  • 87 Moreira PN, Fernández-González R, Rizos D, Ramirez M, Perez-Crespo M, Gutiérrez-Adán A. Inadvertent transgenesis by conventional ICSI in mice. Hum Reprod 2005; 20 (12) 3313-3317
  • 88 Ronquist GK, Larsson A, Ronquist G, Isaksson A, Hreinsson J, Carlsson L, Stavreusevers A. Prostasomal DNA characterization and transfer into human sperm. Mol Reprod Dev 2011; 78 (7) 467-476
  • 89 Practice Committee of American Society for Reproductive Medicine; Practice Committee of Society for Assisted Reproductive Technology. Genetic considerations related to intracytoplasmic sperm injection (ICSI). Fertil Steril 2008; 90 (5, Suppl) S182-S184
  • 90 Cohen J, Scott R, Alikani M , et al. Ooplasmic transfer in mature human oocytes. Mol Hum Reprod 1998; 4 (3) 269-280
  • 91 Barritt JA, Brenner CA, Malter HE, Cohen J. Mitochondria in human offspring derived from ooplasmic transplantation. Hum Reprod 2001; 16 (3) 513-516
  • 92 St John JC. Ooplasm donation in humans: the need to investigate the transmission of mitochondrial DNA following cytoplasmic transfer. Hum Reprod 2002; 17 (8) 1954-1958
  • 93 Barritt JA, Willadsen S, Brenner C, Cohen J. Cytoplasmic transfer in assisted reproduction. Hum Reprod Update 2001; 7 (4) 428-435
  • 94 Hawes SM, Sapienza C, Latham KE. Ooplasmic donation in humans: the potential for epigenic modifications. Hum Reprod 2002; 17 (4) 850-852
  • 95 Zoon KC. Letter to sponsors/researchers: human cells used in therapy involving the transfer of genetic material by means other than the union of gamete nuclei. U.S. Food and Drug Administration Web site. Available at: www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/ucm105852.htm
  • 96 Spikings EC, Alderson J, St John JC. Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer. Hum Reprod Update 2006; 12 (4) 401-415
  • 97 Bredenoord AL, Pennings G, de Wert G. Ooplasmic and nuclear transfer to prevent mitochondrial DNA disorders: conceptual and normative issues. Hum Reprod Update 2008; 14 (6) 669-678
  • 98 Cheng Y, Wang K, Kellam LD , et al. Effects of ooplasm manipulation on DNA methylation and growth of progeny in mice. Biol Reprod 2009; 80 (3) 464-472
  • 99 Liang CG, Han Z, Cheng Y, Zhong Z, Latham KE. Effects of ooplasm transfer on paternal genome function in mice. Hum Reprod 2009; 24 (11) 2718-2728
  • 100 Human Fertilisation and Embryology Authority. Scientific review of the safety and efficacy of methods to avoid mitochondrial disease through assisted conception. Available at: http://www.hfea.gov.uk/6372.html
  • 101 Tachibana M, Sparman M, Sritanaudomchai H , et al. Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 2009; 461 (7262) 367-372
  • 102 Tzeng CR, Hsieh RH, Au HK, Yen YH, Chang SJ. Mitochondria transfer (MIT) into oocyte from autologous cumulus granulosa cells (cGCs). Fertil Steril 2004; 82 (Suppl) S53
  • 103 Khosla S, Dean W, Brown D, Reik W, Feil R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 2001; 64 (3) 918-926
  • 104 Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 2000; 62 (6) 1526-1535
  • 105 Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei MS. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet 2008; 17 (1) 1-14
  • 106 Fernández-Gonzalez R, Moreira P, Bilbao A , et al. Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc Natl Acad Sci U S A 2004; 101 (16) 5880-5885
  • 107 Szyf M. The dynamic epigenome and its implications in toxicology. Toxicol Sci 2007; 100 (1) 7-23
  • 108 Grace KS, Sinclair KD. Assisted reproductive technology, epigenetics, and long-term health: a developmental time bomb still ticking. Semin Reprod Med 2009; 27 (5) 409-416
  • 109 Fernández-Gonzalez R, Ramirez MA, Bilbao A, De Fonseca FR, Gutiérrez-Adán A. Suboptimal in vitro culture conditions: an epigenetic origin of long-term health effects. Mol Reprod Dev 2007; 74 (9) 1149-1156
  • 110 Pool TB. An update on embryo culture for human assisted reproductive technology: media, performance, and safety. Semin Reprod Med 2005; 23 (4) 309-318
  • 111 Watkins AJ, Papenbrock T, Fleming TP. The preimplantation embryo: handle with care. Semin Reprod Med 2008; 26 (2) 175-185
  • 112 Duranthon V, Watson AJ, Lonergan P. Preimplantation embryo programming: transcription, epigenetics, and culture environment. Reproduction 2008; 135 (2) 141-150
  • 113 Khosla S, Dean W, Reik W, Feil R. Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum Reprod Update 2001; 7 (4) 419-427
  • 114 Shao WJ, Tao LY, Xie JY, Gao C, Hu JH, Zhao RQ. Exposure of preimplantation embryos to insulin alters expression of imprinted genes. Comp Med 2007; 57 (5) 482-486
  • 115 Benkhalifa M, Montjean D, Cohen-Bacrie P, Ménézo Y. Imprinting: RNA expression for homocysteine recycling in the human oocyte. Fertil Steril 2010; 93 (5) 1585-1590
  • 116 Menezo Y, Elder K, Benkhalifa M, Dale B. DNA methylation and gene expression in IVF. Reprod Biomed Online 2010; 20 (6) 709-710
  • 117 du Plessis SS, Makker K, Desai NR, Agarwal A. Impact of oxidative stress on IVF. Expert Rev Obstet Gynecol 2008; 3: 539-554
  • 118 Martín-Romero FJ, Miguel-Lasobras EM, Domínguez-Arroyo JA, González-Carrera E, Alvarez IS. Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod Biomed Online 2008; 17 (5) 652-661
  • 119 Abdelrazik H, Agarwal A. L-carnitine and assisted reproduction. Arch Med Sci 2009; 5: S43-S47
  • 120 Market-Velker BA, Fernandes AD, Mann MRW. Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance. Biol Reprod 2010; 83 (6) 938-950
  • 121 Banwell KM, Thompson JG. In vitro maturation of mammalian oocytes: outcomes and consequences. Semin Reprod Med 2008; 26 (2) 162-174
  • 122 Jones GM, Cram DS, Song B , et al. Gene expression profiling of human oocytes following in vivo or in vitro maturation. Hum Reprod 2008; 23 (5) 1138-1144
  • 123 Eppig JJ, O'Brien MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod 1996; 54 (1) 197-207
  • 124 Eppig JJ, O'Brien MJ. Comparison of preimplantation developmental competence after mouse oocyte growth and development in vitro and in vivo. Theriogenology 1998; 49 (2) 415-422
  • 125 Roberts R, Iatropoulou A, Ciantar D , et al. Follicle-stimulating hormone affects metaphase I chromosome alignment and increases aneuploidy in mouse oocytes matured in vitro. Biol Reprod 2005; 72 (1) 107-118
  • 126 Eppig JJ, O'Brien MJ, Wigglesworth K, Nicholson A, Zhang W, King BA. Effect of in vitro maturation of mouse oocytes on the health and lifespan of adult offspring. Hum Reprod 2009; 24 (4) 922-928
  • 127 Anckaert E, Adriaenssens T, Romero S, Smitz J. Ammonium accumulation and use of mineral oil overlay do not alter imprinting establishment at three key imprinted genes in mouse oocytes grown and matured in a long-term follicle culture. Biol Reprod 2009; 81 (4) 666-673
  • 128 Anckaert E, Adriaenssens T, Romero S, Dremier S, Smitz J. Unaltered imprinting establishment of key imprinted genes in mouse oocytes after in vitro follicle culture under variable follicle-stimulating hormone exposure. Int J Dev Biol 2009; 53 (4) 541-548
  • 129 Borghol N, Lornage J, Blachère T, Sophie Garret A, Lefèvre A. Epigenetic status of the H19 locus in human oocytes following in vitro maturation. Genomics 2006; 87 (3) 417-426
  • 130 Liu S, Li Y, Gao X, Yan JH, Chen ZJ. Changes in the distribution of mitochondria before and after in vitro maturation of human oocytes and the effect of in vitro maturation on mitochondria distribution. Fertil Steril 2010; 93 (5) 1550-1555
  • 131 Li Y, Feng HL, Cao YJ , et al. Confocal microscopic analysis of the spindle and chromosome configurations of human oocytes matured in vitro. Fertil Steril 2006; 85 (4) 827-832
  • 132 Vanhoutte L, De Sutter P, Nogueira D, Gerris J, Dhont M, Van der Elst J. Nuclear and cytoplasmic maturation of in vitro matured human oocytes after temporary nuclear arrest by phosphodiesterase 3-inhibitor. Hum Reprod 2007; 22 (5) 1239-1246
  • 133 Varghese AC, Nagy ZP, Agarwal A. Current trends, biological foundations and future prospects of oocyte and embryo cryopreservation. Reprod Biomed Online 2009; 19 (1) 126-140
  • 134 Porcu E, Fabbri R, Damiano G , et al. Clinical experience and applications of oocyte cryopreservation. Mol Cell Endocrinol 2000; 169 (1–2) 33-37
  • 135 Borini A, Cattoli M, Bulletti C, Coticchio G. Clinical efficiency of oocyte and embryo cryopreservation. Ann N Y Acad Sci 2008; 1127: 49-58
  • 136 Borini A, Coticchio G. The efficacy and safety of human oocyte cryopreservation by slow cooling. Semin Reprod Med 2009; 27 (6) 443-449
  • 137 Nagy ZP, Chang CC, Shapiro DB, Bernal DP, Kort HI, Vajta G. The efficacy and safety of human oocyte vitrification. Semin Reprod Med 2009; 27 (6) 450-455
  • 138 Huang JYJ, Chen HY, Tan SL, Chian RC. Effect of choline-supplemented sodium-depleted slow freezing versus vitrification on mouse oocyte meiotic spindles and chromosome abnormalities. Fertil Steril 2007; 88 (4, Suppl) 1093-1100
  • 139 Magli MC, Lappi M, Ferraretti AP, Capoti A, Ruberti A, Gianaroli L. Impact of oocyte cryopreservation on embryo development. Fertil Steril 2010; 93 (2) 510-516
  • 140 Tachataki M, Winston RM, Taylor DM. Quantitative RT-PCR reveals tuberous sclerosis gene, TSC2, mRNA degradation following cryopreservation in the human preimplantation embryo. Mol Hum Reprod 2003; 9 (10) 593-601
  • 141 Kader A, Agarwal A, Abdelrazik H, Sharma RK, Ahmady A, Falcone T. Evaluation of post-thaw DNA integrity of mouse blastocysts after ultrarapid and slow freezing. Fertil Steril 2009; 91 (5, Suppl) 2087-2094
  • 142 Wang Z, Xu L, He F. Embryo vitrification affects the methylation of the H19/Igf2 differentially methylated domain and the expression of H19 and Igf2. Fertil Steril 2010; 93 (8) 2729-2733
  • 143 Donnez J, Martinez-Madrid B, Jadoul P, Van Langendonckt A, Demylle D, Dolmans MM. Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update 2006; 12 (5) 519-535
  • 144 Oktay K, Oktem O. Ovarian cryopreservation and transplantation for fertility preservation for medical indications: report of an ongoing experience. Fertil Steril 2010; 93 (3) 762-768
  • 145 Isachenko V, Lapidus I, Isachenko E , et al. Human ovarian tissue vitrification versus conventional freezing: morphological, endocrinological, and molecular biological evaluation. Reproduction 2009; 138 (2) 319-327
  • 146 Das S, Blake D, Farquhar C, Seif MMW. Assisted hatching on assisted conception (IVF and ICSI). Cochrane Database Syst Rev 2009; 2 (2) CD001894
  • 147 Baart EB, Martini E, Eijkemans MJ , et al. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum Reprod 2007; 22 (4) 980-988
  • 148 Lainas TG, Sfontouris IA, Zorzovilis IZ , et al. Flexible GnRH antagonist protocol versus GnRH agonist long protocol in patients with polycystic ovary syndrome treated for IVF: a prospective randomised controlled trial (RCT). Hum Reprod 2010; 25 (3) 683-689
  • 149 Lee SJ, Schover LR, Partridge AH , et al; American Society of Clinical Oncology. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol 2006; 24 (18) 2917-2931
  • 150 Oktay K, Hourvitz A, Sahin G , et al. Letrozole reduces estrogen and gonadotropin exposure in women with breast cancer undergoing ovarian stimulation before chemotherapy. J Clin Endocrinol Metab 2006; 91 (10) 3885-3890
  • 151 Azim AA, Costantini-Ferrando M, Lostritto K, Oktay K. Relative potencies of anastrozole and letrozole to suppress estradiol in breast cancer patients undergoing ovarian stimulation before in vitro fertilization. J Clin Endocrinol Metab 2007; 92 (6) 2197-2200
  • 152 Griesinger G, Kolibianakis EM, Diedrich K, Ludwig M. Ovarian stimulation for IVF has no quantitative association with birthweight: a registry study. Hum Reprod 2008; 23 (11) 2549-2554
  • 153 Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod 2007; 22 (12) 3069-3077
  • 154 Assou S, Haouzi D, Mahmoud K , et al. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol Hum Reprod 2008; 14 (12) 711-719
  • 155 Sher G, Keskintepe L, Keskintepe M, Maassarani G, Tortoriello D, Brody S. Genetic analysis of human embryos by metaphase comparative genomic hybridization (mCGH) improves efficiency of IVF by increasing embryo implantation rate and reducing multiple pregnancies and spontaneous miscarriages. Fertil Steril 2009; 92 (6) 1886-1894
  • 156 Caperton L, Murphey P, Yamazaki Y , et al. Assisted reproductive technologies do not alter mutation frequency or spectrum. Proc Natl Acad Sci U S A 2007; 104 (12) 5085-5090
  • 157 El-Chaar D, Yang Q, Gao J , et al. Risk of birth defects increased in pregnancies conceived by assisted human reproduction. Fertil Steril 2009; 92 (5) 1557-1561