Synlett 2013; 24(4): 475-478
DOI: 10.1055/s-0032-1318159
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Synthesis of Isoquinolinones via Sequential Cyclization and N–O Bond Cleavage of N-Methoxy-o-alkynylbenzamides

Manita Jithunsa
Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe, Hyogo 658-8558, Japan   Fax: +81(78)4417554   Email: miyata@kobepharma-u.ac.jp
,
Masafumi Ueda*
Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe, Hyogo 658-8558, Japan   Fax: +81(78)4417554   Email: miyata@kobepharma-u.ac.jp
,
Naoki Aoi
Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe, Hyogo 658-8558, Japan   Fax: +81(78)4417554   Email: miyata@kobepharma-u.ac.jp
,
Shoichi Sugita
Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe, Hyogo 658-8558, Japan   Fax: +81(78)4417554   Email: miyata@kobepharma-u.ac.jp
,
Tetsuya Miyoshi
Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe, Hyogo 658-8558, Japan   Fax: +81(78)4417554   Email: miyata@kobepharma-u.ac.jp
,
Okiko Miyata*
Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe, Hyogo 658-8558, Japan   Fax: +81(78)4417554   Email: miyata@kobepharma-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 06 December 2012

Accepted after revision: 14 January 2013

Publication Date:
29 January 2013 (online)


Abstract

A palladium-catalyzed controlled 6-endo-dig cyclization process has been developed for the chemoselective synthesis of isoquinolin-1-ones from N-alkoxy-o-alkynylbenzamides. The mechanism and scope of the reaction have also been investigated. Deuterium-labeling studies were used to confirm the intramolecular 1,5-hydrogen shift as a key step in the transformation.

 
  • References and Notes

  • 1 Onda M, Yamaguchi H. Chem. Pharm. Bull. 1979; 27: 2076
    • 2a Trotter BW, Nanda KK, Kett NR, Regan CP, Lynch JJ, Stump GL, Kiss L, Wang J, Spencer RH, Kane SA, White RB, Zhang R, Anderson KD, Liverton NJ, McIntyre CJ, Beshore DC, Hartman GD, Dinsmore CJ. J. Med. Chem. 2006; 49: 6954
    • 2b Cho W.-J, Park M.-J, Chung B.-H, Lee C.-O. Bioorg. Med. Chem. Lett. 1998; 8: 41
    • 2c Ukita T, Nakamura Y, Kubo A, Yamamoto Y, Moritani Y, Saruta K, Higashijima T, Kotera J, Takagi M, Kikkawa K, Omori K. J. Med. Chem. 2001; 44: 2204
    • 2d Cho W.-J, Kim E.-K, Park IY, Jeong EY, Kim TS, Le TN, Kim D.-D, Lee E.-S. Bioorg. Med. Chem. 2002; 10: 2953
  • 3 Bisagni E, Landras C, Thirot S, Huel C. Tetrahedron 1996; 52: 10427
    • 4a Ogliaruso MA, Wolfe JF In Synthesis of Lactones and Lactams . Patai S, Rappoport Z. John Wiley and Sons; Chichester: 2003: 133-143
    • 4b Anghelide N, Draghici C, Railenu D. Tetrahedron 1974; 30: 623
    • 4c Mao C.-L, Barnish IT, Hauser CR. J. Heterocycl. Chem. 1969; 83
    • 4d Girling IR, Widdowson DA. Tetrahedron Lett. 1982; 23: 1957
    • 5a Hey DH, Jones GH, Perkins MJ. J. Chem. Soc., Perkin Trans. 1 1971; 116
    • 5b Lenz GR. J. Org. Chem. 1974; 39: 2839
    • 5c Ishibashi H, Ohata K, Niihara M, Sato T, Ikeda M. J. Chem. Soc., Perkin Trans. 1 2000; 547
    • 5d Couture A, Cornet H, Deniau E, Grandclaudon P, Lebrun S. J. Chem. Soc., Perkin Trans. 1 1997; 469
    • 5e Bailey DM, de Grazia CG. J. Org. Chem. 1970; 35: 4088
    • 5f Couture A, Cornet H, Grandclaudon P. Tetrahedron 1992; 48: 3857
    • 5g Wu M.-J, Chang L.-J, Wei L.-M, Lin C.-F. Tetrahedron 1999; 55: 13193
    • 5h Korte DE, Hegedus LS, Wirth RK. J. Org. Chem. 1977; 42: 1329
    • 5i Rakshit S, Grohmann C, Besset T, Glorius FJ. J. Am. Chem. Soc. 2011; 133: 2350
    • 5j Yang G, Zhang W. Org. Lett. 2012; 14: 268
  • 6 Kundu NG, Khan MW. Tetrahedron 2000; 56: 4777
  • 7 Yao T, Larock RC. J. Org. Chem. 2005; 70: 1432

    • For a review, see:
    • 8a Zeni G, Larock RC. Chem. Rev. 2004; 104: 2285
    • 8b Nagarajan A, Balasubramanian TR. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1989; 28: 67
    • 8c Sashida H, Kawamukai A. Synthesis 1999; 1145
    • 8d Sun C, Xu B. J. Org. Chem. 2008; 73: 7361
    • 8e Sakai N, Annaka K, Fujita A, Sato A, Konakahara T. J. Org. Chem. 2008; 73: 4161
    • 9a Ueda M, Sato A, Ikeda Y, Miyoshi T, Naito T, Miyata O. Org. Lett. 2010; 12: 2594
    • 9b Ueda M, Ikeda Y, Sato A, Ito Y, Kakiuchi M, Shono H, Miyoshi T, Naito T, Miyata O. Tetrahedron 2011; 67: 4612
    • 9c Ueda M, Matsubara H, Yoshida K, Sato A, Naito T, Miyata O. Chem. Eur. J. 2011; 17: 1789
    • 9d Miyoshi T, Miyakawa T, Ueda M, Miyata O. Angew. Chem. Int. Ed. 2011; 50: 928
    • 9e Ueda M, Sugita S, Sato A, Miyoshi T, Miyata O. J. Org. Chem. 2012; 77: 9344
  • 10 Jithunsa M, Ueda M, Miyata O. Org. Lett. 2011; 13: 518
  • 11 Nakamura I, Sato Y, Terada M. J. Am. Chem. Soc. 2009; 131: 4198

    • The transition-metal-catalyzed synthesis of heterocycles via N–O bond cleavage has been reported, see:
    • 12a Nakamura I, Iwata T, Zhang D, Terada M. Org. Lett. 2012; 14: 206
    • 12b Cui L, Peng Y, Zhang L. J. Am. Chem. Soc. 2009; 131: 8394
    • 12c Yeom H.-S, Lee Y, Jeong J, So E, Hwang S, Lee J.-E, Lee SS, Shin S. Angew. Chem. Int. Ed. 2010; 49: 1611
    • 12d Hirano K, Satoh T, Miura M. Org. Lett. 2011; 13: 2395
    • 12e Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
    • 12f Guimond N, Gouliaras C, Fagnou K. J. Am. Chem. Soc. 2010; 132: 6908
    • 12g Yeom H.-S, Lee J.-E, Shin S. Angew. Chem. Int. Ed. 2008; 47: 7040
  • 13 Asao N, Nogami T, Takahashi K, Yamamoto Y. J. Am. Chem. Soc. 2002; 124: 764
  • 14 General Procedure for the Palladium-Catalyzed Synthesis of Isoquinolinone To a solution of N-alkoxy-o-alkynylbenzamide 1 (0.20 mmol) in DCE (4 mL) was added i-PrOH (0.6 mmol), p-benzoquinone (1.0 mmol), and PdCl2(PPh3)2 (0.04 mmol) under O2 atmosphere. After being refluxed for 24 h, the reaction mixture was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel eluting with EtOAc–hexane (1:3) and/or toluene–Et2O (3:1). Representative spectroscopic data of selected products are as follows. 2-Methyl-3-phenylisoquinolin-1(2H)-one (2a) Yellow solid; mp 66–67 °C (EtOAc–hexane; lit.5f 63 °C). 1H NMR (300 MHz, CDCl3): δ = 8.45 (br d, J = 7.5 Hz, 1 H), 7.64 (br t, J = 8.1 Hz, 1 H), 7.51–7.39 (m, 7 H), 6.46 (s, 1 H), 3.44 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 163.3, 143.8, 136.3, 136.1, 132.2, 128.8, 128.7, 128.5, 127.7, 126.5, 125.7, 124.7, 107.5, 34.1. IR (KBr): νmax = 1652, 1619 cm–1. ESI-HRMS: m/z calcd for C16H13NO [M + H]+: 236.1069; found: 236.1066. 3-(4-Fluorophenyl)-2-methylisoquinolin-1(2H)-one (2b) Yellow solid; mp 135–137 °C (EtOAc–hexane). 1H NMR (300 MHz, CDCl3): δ = 8.44 (d, J = 7.8 Hz, 1 H), 7.64 (t, J = 7.8 Hz, 1 H), 7.51–7.45 (m, 2 H), 7.42–7.37 (m, 2 H), 7.17 (t, J = 8.4 Hz, 2 H), 6.44 (s, 1 H), 3.41 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 164.6, 163.3, 161.3, 142.7, 136.2, 132.3, 132.2, 130.7, 130.6, 127.8, 126.7, 125.8, 124.9, 115.9, 115.6, 107.7, 34.1. IR (KBr): νmax = 1650, 1619 cm–1. ESI-HRMS: m/z calcd for C16H13ONF [M + H]+: 254.0976; found: 254.0967. 7-Chloro-2-methyl-3-phenylisoquinolin-1(2H)-one (2h) White solid; mp 148–150 °C (EtOAc–hexane). 1H NMR (300 MHz, CDCl3): δ = 8.37 (d, J = 8.4 Hz, 1 H), 7.49–7.45 (m, 4 H), 7.42–7.37 (m, 3 H), 6.36 (s, 1 H), 3.40 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 162.8, 145.4, 138.6, 137.6, 135.8, 129.7, 129.2, 128.7, 128.6, 127.1, 124.9, 123.2, 106.4, 34.1. IR (KBr): νmax = 1649, 1624 cm–1. ESI-HRMS: m/z calcd for C16H13ONCl [M + H]+: 270.0680; found: 270.0673.