Synlett 2013; 24(3): 351-354
DOI: 10.1055/s-0032-1317986
letter
© Georg Thieme Verlag Stuttgart · New York

Fast Assembly of 1H-Imidazo[1,2-a]imidazol-5-amines via Groebke–Blackburn–Bienaymé Reaction with 2-Aminoimidazoles

Olga P. Pereshivko
,
Vsevolod A. Peshkov
,
Denis S. Ermolat’ev
,
Erik V. Van der Eycken*
Weitere Informationen

Publikationsverlauf

Received: 30. September 2012

Accepted after revision: 14. Dezember 2012

Publikationsdatum:
16. Januar 2013 (online)


Abstract

A novel microwave-assisted protocol allowing the ­successful application of 2-aminoimidazoles in the Groebke–­Blackburn–Bienaymé reaction for the facile construction of the 1H-imidazo[1,2-a]imidazol-5-amine core was developed.

Supporting Information

 
  • References and Notes

  • 1 The authors contributed equally to this work.

    • For selected reviews covering different aspects of isocyanide-based multicomponent reactions, see:
    • 2a Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 2b Dömling A. Chem. Rev. 2006; 106: 17
    • 2c De Moliner F, Banfi L, Riva R, Basso A. Comb. Chem. High Throughput Screening 2011; 14: 782
    • 2d Elders N, Ruijter E, Nenajdenko VG, Orru RV. A. Top. Heterocycl. Chem. 2010; 23: 129
    • 2e van Berkel SS, Bögels BG. M, Wijdeven MA, Westermann B, Rutjes FP. J. T. Eur. J. Org. Chem. 2012; 3543
    • 2f El Kaim L, Grimaud L. Tetrahedron 2009; 65: 2153
    • 2g Ivachtchenko AV, Ivanenkov YaA, Kysil VM, Krasavin M, Ilyin AP. Russ. Chem. Rev. 2010; 79: 787

      For selected reviews on post-condensation transformations, see:
    • 3a Banfi L, Basso A, Riva R. Top. Heterocycl. Chem. 2010; 23: 1
    • 3b Banfi L, Riva R, Basso A. Synlett 2010; 23
    • 4a Groebke K, Weber L, Mehlin F. Synlett 1998; 661
    • 4b Blackburn C, Guan B, Fleming P, Shiosaki K, Tsai S. Tetrahedron Lett. 1998; 39: 3635
    • 4c Bienaymé H, Bouzid K. Angew. Chem. Int. Ed. 1998; 37: 2234

      For selected examples, see:
    • 5a Krasavin M, Tsirulnikov S, Nikulnikov M, Kysil V, Ivachtchenko A. Tetrahedron Lett. 2008; 49: 5241
    • 5b Guchhait SK, Madaan C. Tetrahedron Lett. 2011; 52: 56
    • 5c Lyon MA, Kercher TS. Org. Lett. 2004; 6: 4989
    • 5d Schwerkooke J, Masquelin T, Perun T, Hulme C. Tetrahedron Lett. 2005; 46: 8355
    • 5e Parchinsky VZ, Koleda VV, Schuvalova O, Kravchenko DV, Krasavin M. Tetrahedron Lett. 2006; 47: 6891
    • 5f Sandulenko Y, Komarov A, Rufanov K, Krasavin M. Tetrahedron Lett. 2008; 49: 5990
    • 5g Rousseau AL, Matlaba P, Parkinson CJ. Tetrahedron Lett. 2007; 48: 4079
    • 5h Lamberth C. Synlett 2011; 1740
    • 5i Sharma A, Li H.-y. Synlett 2011; 1407
    • 5j Guasconi M, Lu X, Massarotti A, Caldarelli A, Ciraolo E, Tron GC, Hirsch E, Sorba G, Pirali T. Org. Biomol. Chem. 2011; 9: 4144

      In some literature reports, the formation of two isomeric azine-fused aminoimidazole products was described, see:
    • 6a Mandair GS, Light M, Russell A, Hursthouse M, Bradley M. Tetrahedron Lett. 2002; 43: 4267
    • 6b Nenadjenko VG, Reznichenko AL, Balenkova ES. Russ. Chem. Bull., Int. Ed. 2007; 56: 560
    • 6c Guchhait SK, Madaan C. Synlett 2009; 628

      For our advancements in the synthesis of polysubstituted 2-aminoimidazole derivatives, see:
    • 7a Ermolat’ev DS, Babaev EV, Van der Eycken EV. Org. Lett. 2006; 8: 5781
    • 7b Ermolat’ev DS, Alifanov VL, Rybakov VB, Babaev EV, Van der Eycken EV. Synthesis 2008; 2083
    • 7c Ermolat’ev DS, Van der Eycken EV. J. Org. Chem. 2008; 73: 6691
    • 7d Ermolat’ev DS, Svidritzky EP, Babaev EV, Van der Eycken E. Tetrahedron Lett. 2009; 50: 5218
    • 7e Steenackers HP. L, Ermolat’ev DS, Savaliya B, De Weerdt A, De Coster D, Shah A, Van der Eycken EV, De Vos DE, Vanderleyden J, De Keersmaecker SC. J. J. Med. Chem. 2011; 54: 472
    • 7f Ermolat’ev DS, Bariwal JB, Steenackers HP. L, De Keersmaecker SC. J, Van der Eycken EV. Angew. Chem. Int. Ed. 2010; 49: 9465
    • 7g Pereshivko OP, Peshkov VA, Ermolat’ev DS, Van Hove S, Van Hecke K, Van Meervelt L, Van der Eycken EV. Synthesis 2011; 1587
  • 8 For our advancements in the elaboration of the 2-aminoimidazole core, see: Modha SG, Mehta VP, Ermolat’ev DS, Balzarini J, Van Hecke K, Van Meervelt L, Van der Eycken E. Mol. Diversity 2010; 14: 767
  • 9 Guchhait SK, Madaan C, Thakkar BS. Synthesis 2009; 3293
  • 10 Parchinsky VZ, Shuvalova O, Ushakova O, Kravchenko DV, Krasavin M. Tetrahedron Lett. 2006; 47: 947
    • 11a Mironov MA, Tokareva MI, Ivantsova MN, Mokrushin VS. Russ. Chem. Bull., Int. Ed. 2006; 55: 1835
    • 11b Rahmati A, Kouzehrash MA. Synthesis 2011; 2913
  • 12 Microwave-Assisted Groebke–Blackburn–Bienaymé Reaction; Typical Procedure for 1-Benzyl-N-tert-butyl-2,6-diphenyl-1H-imidazo[1,2-a]imidazol-5-amine (4a): To a microwave vial equipped with a magnetic stir bar containing 1a (75 mg, 0.3 mmol) and p-toluenesulfonic acid hydrate (11 mg, 0.06 mmol), anhydrous toluene (1 mL), 2a (38 mg, 0.36 mmol) and 3a (37 mg, 0.45 mmol) were consecutively added. The reaction vessel was sealed and irradiated in the cavity of a CEM-Discover microwave reactor at a set temperature of 110 °C for 30 min. Upon completion of the reaction, the vial was cooled with a stream of air. The resulting reaction mixture was diluted with EtOAc (50 mL), thoroughly washed with 1 M HCl (2 × 50 mL) and sat. aq Na2CO3 (50 mL), dried over Na2SO4, and concentrated under reduced pressure. The crude product was dissolved in EtOAc (5 mL) and subjected to flash chromatography [silica (25 g); EtOAc–heptane, 3:7] to give pure 4a (87 mg, 69%). 1H NMR (300 MHz, CDCl3): δ = 8.07–7.95 (m, 2 H), 7.41–7.26 (m, 7 H), 7.25–7.10 (m, 6 H), 6.94 (s, 1 H), 5.22 (s, 2 H), 2.90 (br s, 1 H), 1.12 (s, 9 H); 13C NMR (CDCl3, 75 MHz): δ = 145.5, 137.4, 136.3, 136.2, 133.3, 129.5, 128.9, 128.7, 128.62, 128.56, 128.47, 128.0, 127.4, 127.3, 126.0, 120.1, 102.5, 55.6, 47.0, 30.3; HRMS (EI): m/z calcd for C28H28N4: 420.2314; found: 420.2281.
  • 13 CAUTION! The acidic aqueous workup was necessary in most cases to decompose imine 5, which was otherwise difficult to separate from the desired product 4 (Scheme 1). See the Supporting Information for details.