Synlett 2013; 24(2): 223-225
DOI: 10.1055/s-0032-1317925
letter
© Georg Thieme Verlag Stuttgart · New York

A New Approach to Ring Expansion of Keto Aziridines to 2,5-Diaryloxazoles

Heshmat A. Samimi*
Faculty of Science, Department of Chemistry, Shahrekord University, P. O. Box 115, Shahrekord, Iran   Fax: +98(381)4424419   Email: samimi-h@sci.sku.ac.ir
,
Somaye Mohammadi
Faculty of Science, Department of Chemistry, Shahrekord University, P. O. Box 115, Shahrekord, Iran   Fax: +98(381)4424419   Email: samimi-h@sci.sku.ac.ir
› Author Affiliations
Further Information

Publication History

Received: 03 October 2012

Accepted after revision: 23 November 2012

Publication Date:
12 December 2012 (online)


Abstract

Ring expansion of keto aziridines to the corresponding 2,5-diaryl oxazoles in the presence of dicyclohexyl carbodiimide and iodine under refluxing acetonitrile conditions is described. A plausible mechanism is proposed.

Supporting Information

 
  • References and Notes

    • 1a Wipf P. Chem. Rev. 1995; 95: 2115
    • 1b Lewis JR. Nat. Prod. Rep. 1995; 12: 135
    • 1c Jin Z. Nat. Prod. Rep. 2003; 20: 584
  • 2 Giddens AC, Boshoff HI. M, Franzblau SG, Barry CE, Copp BR. Tetrahedron Lett. 2005; 46: 7355
  • 3 Bell FW, Cantrell AS, Hoegberg M, Jaskunas SR, Johansson NG, Jordan ChL, Kinnick MD, Lind P, Morin J, Noreen JR, Oberg B, Palkowitz JA, Parrish CA, Pranc P, Sahlberg C, Ternansky RJ, Vasileff RT, Vrang L, West SJ, Zhang H, Zhou X.-X. J. Med. Chem. 1995; 38: 4929
  • 4 Liu XH, Lv PC. Xue J. Y, Song BA, Zhu HL. Eur. J. Med. Chem. 2009; 3930
  • 5 Dominguez XA, DelaFuente G, Gonzalez AG, Reina M, Timon I. Heterocycles 1988; 27: 35
  • 6 Venugopala KN, Jayashree BS. Indian J. Heterocycl. Chem. 2003; 12: 307
  • 7 Talley JJ, Bertenshaw SR, Brown DL, Carter JS, Graneto MJ, Koboldt CM, Masferrer JL, Norman BH, Rogier DJ. Jr, Zweifel BS, Seibert K. Med. Res. Rev. 1999; 19: 199
  • 8 Kelly TR, Lang F. J. Org. Chem. 1996; 61: 4623
  • 9 Wipf P, Miller CP. J. Org. Chem. 1993; 58: 3604
  • 10 Phillips AJ, Uto Y, Wipf P, Reno MJ, Williams DR. Org. Lett. 2000; 2: 1165
  • 11 Beccalli EM, Borsini E, Broggini G, Palmisano G, Sottocornola S. J. Org. Chem. 2008; 73: 4746
  • 12 Takeuchi H, Yanagida S.-I, Ozaki T, Hagiwara S, Eguchi S. J. Org. Chem. 1989; 54: 431
  • 13 Doyle MP, Buhro WE, Davidson JG, Elliott RC, Hoekstra JW, Oppenhuizen M. J. Org. Chem. 1980; 45: 3657
  • 14 Lautens M, Roy A. Org. Lett. 2000; 2: 555
    • 15a Wang S.-X, Wang M.-X, Wang D.-X, Zhu J. Eur. J. Org. Chem. 2007; 4076
    • 15b Wang S.-X, Wang M.-X, Wang D.-X, Zhu J. Org. Lett. 2007; 9: 3615
  • 16 Keni M, Tepe JJ. J. Org. Chem. 2005; 70: 4211
  • 17 Beletskii EV, Kuznetsov MA. Russ. J. Org. Chem. 2009; 45: 1229
    • 18a Padwa A, Eisenhardt W. Chem. Commun. 1968; 380
    • 18b Padwa A, Eisenhardt W. J. Am. Chem. Soc. 1968; 90: 2442
    • 18c Padwa A, Eisenhardt W. J. Am. Chem. Soc. 1971; 93: 1400
    • 19a Lown JW, Moser JP. J. Chem. Soc., Chem. Commun. 1970; 247
    • 19b Kuznetsov MA, Voronin VV. Chem. Heterocycl. Compd. 2011; 47: 173
  • 20 Padwa A, Eastman D, Hamilton L. J. Org. Chem. 1968; 33: 1317
    • 21a Mamaghani M, Tabatabeian K, Samimi HA. J. Heterocycl. Chem. 2008; 45: 1765
    • 21b Samimi HA, Mamaghani M, Tabatabeian K, Bijanzadeh HR. J. Iran. Chem. Soc. 2010; 7: 185
    • 21c Mamaghani M, Tabatabeian K, Samimi HA. Z. Kristallogr. 2008; 223: 390
    • 21d Samimi HA, Shams Z, Momeni AR. J. Iran. Chem. Soc. 2012; 9: 705
  • 23 Gabriel S. Ber. Dtsch. Chem. Ges. 1888; 21: 1049
  • 24 Typical Experimental Procedure for the Preparation of 2,5-Oxazoles: 2-(2,4-Dichlorophenyl)-5-phenyloxazole (Table 2 Entry 3)I2 (1.0 mmol) was added to a solution of 2-benzoyl-3-(2,4-dichlorphenyl)aziridine (1.0 mmol) and dicyclohexyl carbodiimide (1.0 mmol) in MeCN (10 mL). The mixture was refluxed for 2 h, cooled, and the crude product was purified by column chromatography (silica gel, EtOAc–hexane = 2:5) to provide the desired 2-(2,4-diclorophenyl)-5-phenyloxazole (86%); yellow solid, mp 90–92 °C. IR (KBr): ν = 3064, 1662, 1590, 1482, 1101, 867, 828, 756, 685 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.25–7.31 (m, 1 H), 7.34–7.39 (m, 2 H), 7.42 (s, 1 H), 7.47 (d, J = 2.0 Hz, 1 H), 7.65 (d, J = 8.1 Hz, 2 H), 7.97 (d, J = 8.1 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 121.1, 123.8, 124.5, 124.6, 127.4, 129.0, 129.1, 129.2, 130.0, 131.8, 148.7, 152.4, 158.8 ppm. Anal. Calcd (%) for C15H9Cl2NO: C, 62.09; H, 3.13; N, 4.83. Found: C, 62.11; H, 3.05; N, 4.77.