Synlett 2013; 24(1): 65-68
DOI: 10.1055/s-0032-1317694
letter
© Georg Thieme Verlag Stuttgart · New York

Application of a Stereoselective Rhodium(II)-Catalyzed Oxonium Ylide Formation–[2,3]-Sigmatropic Rearrangement of an α-Diazo-β-keto Ester to the Synthesis of 2-epi-Cinatrin C1 Dimethyl Ester

Takayuki Yakura*
a   Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan   Fax: +81(76)4345053   Email: yakura@pha.u-toyama.ac.jp
,
Ayaka Ozono
a   Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan   Fax: +81(76)4345053   Email: yakura@pha.u-toyama.ac.jp
,
Katsuaki Matsui
a   Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan   Fax: +81(76)4345053   Email: yakura@pha.u-toyama.ac.jp
,
Masayuki Yamashita
b   Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607-8412, Japan
,
Tomoya Fujiwara
a   Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan   Fax: +81(76)4345053   Email: yakura@pha.u-toyama.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 17 October 2012

Accepted after revision: 05 November 2012

Publication Date:
27 November 2012 (online)


Abstract

The Rh2(OAc)4-catalyzed oxonium ylide formation–[2,3]-sigmatropic rearrangement of a highly functionalized α-diazo-β-keto ester derived from d-glucose proceeded stereoselectively to give the corresponding tetrahydrofuran-3-one as a single diastereomer in high yield. This reaction was applied to the synthesis of 2-epi-cinatrin C1 dimethyl ester as a key step.

 
  • References

    • 1a Doyle MP, McKervey MA, Ye T In Modern Catalytic Methods for Organic Synthesis with Diazo Compounds . John Wiley & Sons; New York: 1998
    • 1b For a review, see: Merlic CA, Zechman AL. Synthesis 2003; 1137
  • 2 Yakura T, Muramatsu W, Uenishi J. Chem. Pharm. Bull. 2005; 53: 989
  • 3 Yakura T, Matsui K, Matsuzaka K, Yamashita M. Heterocycles 2009; 79: 353
    • 4a Itazaki H, Nagashima K, Kawamura Y, Matsumoto K, Nakai H, Terui Y. J. Antibiot. 1992; 45: 38
    • 4b Tanaka K, Itazaki H, Yoshida T. J. Antibiot. 1992; 45: 50
    • 5a Evans DA, Trotter BW, Barrow JC. Tetrahedron 1997; 53: 8779
    • 5b Cuzzupe AN, Florio RD, Rizzacasa MA. J. Org. Chem. 2002; 67: 4392
    • 5c Cuzzupe AN, Florio RD, White JM, Rizzacasa MA. Org. Biomol. Chem. 2003; 1: 3572
  • 6 Tanabe G, Yoshikai K, Hatanaka T, Yamamoto M, Shao Y, Minematsu T, Muraoka O, Wang T, Matsuda H, Yoshikawa M. Bioorg. Med. Chem. 2007; 15: 3926
  • 7 Rhodium(II)-Catalyzed Reaction of α-Diazo-β-keto Ester 4: To a solution of Rh2(OAc)4 (17 mg, 0.038 mmol) in CH2Cl2 (40 mL) was added a solution of 4 (618 mg, 1.27 mmol) in CH2Cl2 (24 mL). The resulting solution was refluxed for 8 h. After concentration of the reaction, the residue was purified by column chromatography on SiO2 (5% EtOAc in hexane) to give 3 (459 mg, 79%) as a colorless oil; [α]D 26 +12.9 (c = 0.750, CHCl3). IR (neat): 1781, 1753 cm–1. 1H NMR (300 MHz, CDCl3): δ = 0.09 (s, 6 H), 0.11 (s, 3 H), 0.18 (s, 3 H), 0.90 (s, 9 H), 0.91 (s, 9 H), 2.61–2.81 (m, 2 H), 3.72 (s, 3 H), 3.82 (dd, J = 11.8, 3.0 Hz, 1 H), 3.91 (ddd, J = 8.9, 3.0, 2.1 Hz, 1 H), 4.00 (dd, J = 11.8, 2.1 Hz, 1 H), 4.57 (d, J = 8.8 Hz, 1 H), 5.11–5.21 (m, 2 H), 5.67–5.81 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = –5.5, –5.4, –5.3, –4.4, 18.2, 18.3, 25.6 (3), 25.8 (3), 38.4, 52.8, 61.3, 72.3, 80.2, 84.8, 120.2, 130.7, 167.6, 208.6. MS: m/z = 459 [M+ + H]. HRMS (EI): m/z calcd for C22H43O6Si2: 459.2598; found: 459.2578.
  • 8 Spectroscopic data for 10: colorless crystals; mp 86–88 °C (from 5% EtOAc in hexane); [α]D 21 −30.8° (c = 0.5, CHCl3). IR (neat): 1740, 1531 cm–1. 1H NMR (300 MHz, CDCl3): δ = −0.04 (s, 3 H), 0.06 (s, 3 H), 0.09 (s, 3 H), 0.10 (s, 3 H), 0.74 (s, 9 H), 0.91 (s, 9 H), 2.74 (dd, J = 14.0, 7.4 Hz, 1 H), 2.89 (dd, J = 13.6, 7.4 Hz, 1 H), 3.70 (dd, J = 11.8, 4.0 Hz, 1 H), 3.73 (s, 3 H), 3.81 (dd, J = 11.3, 3.3 Hz, 1 H), 4.08 (dt, J = 5.2, 3.3 Hz, 1 H), 4.52 (t, J = 4.9 Hz, 1 H), 5.01–5.06 (m, 1 H), 5.08 (br s, 1 H), 5.64–5.79 (m, 1 H), 5.75 (d, J = 4.9 Hz, 1 H), 8.25 (d, J = 8.8 Hz, 2 H), 8.32 (d, J = 8.8 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = −5.53, −5.46, −5.1, −5.0, 17.7, 18.4, 25.5 (3), 25.9 (3), 38.4, 52.4, 62.4, 71.4, 84.9, 86.2, 119.0, 123.7, 130.8, 131.6, 135.2, 160.7, 163.5, 171.7. MS: m/z = 610 [M+ + H]. HRMS (EI): m/z calcd for C29H48O9NSi2: 610.2867; found: 610.2868. The X-ray data are now being deposited with the CCDC. CCDC-908929 (for 10) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.�
  • 9 The coupling constant between the olefinic protons of 11 was observed to be 15.4 Hz.
    • 10a Taber DF, Song Y. J. Org. Chem. 1996; 61: 7508
    • 10b Kim JN, Ryu EK. Tetrahedron Lett. 1992; 33: 3141
  • 11 Szarek WA, Zamojski A, Tiwari KN, Ison ER. Tetrahedron Lett. 1986; 27: 3827
  • 12 Spectroscopic data for 2: a colorless oil; [α]D 18 −35.1° (c = 0.750, CHCl3). IR (neat): 3462, 1806, 1748 cm–1. 1H NMR (300 MHz, CDCl3): δ = 0.88 (t, J = 6.6 Hz, 3 H), 1.25 (br s, 20 H), 1.92 (ddd, J = 14.0, 11.8, 4.4 Hz, 1 H), 2.08 (ddd, J = 14.0, 11.8, 4.4 Hz, 1 H), 2.93 (d, J = 9.1 Hz, 1 H), 3.79 (s, 3 H), 3.86 (s, 3 H), 3.89 (br s, 1 H), 4.99 (d, J = 8.8 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 14.1, 22.6, 23.2, 29.3, 29.4, 29.56, 29.60, 30.7, 31.9, 53.3, 54.0, 71.3, 81.3, 89.2, 168.9, 169.1, 172.7. MS: m/z = 402 [M+]. HRMS (EI): m/z calcd for C20H34O8: 402.2254; found: 402.2234.
  • 13 Unfortunately, the treatment of 2 with aqueous sodium hydroxide according to Rizzacasa’s cinatrin syntheses (see refs. 5a and 5b) gave a complex mixture. It is very interesting that the stereochemistry of the C-2 position strongly influenced its chemical stability.