Synthesis 2013; 45(3): 308-325
DOI: 10.1055/s-0032-1316835
feature article
© Georg Thieme Verlag Stuttgart · New York

Organocatalytic Stereoisomerization versus Alkene Isomerization: Catalytic Asymmetric Synthesis of 1-Hydroxy-trans-2,5-diphenylphospholane 1-Oxide

Lukas Hintermann*
a  Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany   Fax: +49(89)28913669   Email: lukas.hintermann@tum.de
,
Marco Schmitz
a  Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany   Fax: +49(89)28913669   Email: lukas.hintermann@tum.de
,
Oleg V. Maltsev
a  Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany   Fax: +49(89)28913669   Email: lukas.hintermann@tum.de
,
Panče Naumov
b  New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
c  Institute for Chemical Research and the Hakubi Center for Advanced Research, Kyoto University, Uji, Kyoto 611–0011, Japan
› Author Affiliations
Further Information

Publication History

Received: 22 September 2012

Accepted after revision: 28 November 2012

Publication Date:
09 January 2013 (online)


Abstract

The potential for an organocatalytic asymmetric stereoisomerization or alkene isomerization as atom-economic reaction with minimal structural change was investigated. The McCormack cycloaddition of 1,4-diarylbuta-1,3-dienes with (dialkylamino)dichlorophosphane and aluminum trichloride gives meso-2,5-diaryl-1-(dialkylamino)-1-oxo-2,5-dihydro-1H-phospholes, which were identified as suitable substrates for asymmetric isomerization to (1R,5R)-2,5-diaryl-1-(dialkylamino)-1-oxo-4,5-dihydro-1H-phospholes in the presence of bifunctional organocatalysts (cinchona alkaloids, Takemoto catalyst) in up to 91% ee and quantitative yield. The substrate range and the mechanism of the catalysis were studied. The reaction involves proton abstraction by the base, but a primary deuterium KIE is absent. Enriched (1R,5R)-1-(diethylamino)-1-oxo-2,5-diphenyl-4,5-dihydro-1H-phosphole was hydrolyzed to (5R)-1-hydroxy-1-oxo-2,5-diphenyl-4,5-dihydro-1H-phosphole, which was hydrogenated diastereoselectively under dissolving metal conditions to give (2R,5R)-1-hydroxy-1-oxo-2,5-diphenylphospholane (Fiaud’s acid) in preference to meso-1-hydroxy-1-oxo-2,5-diphenylphospholane. An asymmetric catalytic total synthesis of Fiaud’s acid, which is a building block for chiral phospholane synthesis, has been realized in five steps from thiophene, using nickel-catalyzed Wenkert arylation, McCormack cycloaddition, asymmetric dihydro-1H-phosphole isomerization, hydrolysis, and diastereo­selective hydrogenation.

Supporting Information

 
  • References

  • 1 This definition of isomerization encompasses stereoiso-merizations and tautomerization (bond order isomerization), but not rearrangements, in order to point out the minimal change to the substrate in the course of the reaction.
    • 2a Larsen CR, Grotjahn DB. J. Am. Chem. Soc. 2012; 134: 10357
    • 2b Frauenrath H, Brethauer D, Reim S, Maurer M, Raabe G. Angew. Chem. Int. Ed. 2001; 40: 177
    • 2c Fu G In Modern Rhodium-Catalyzed Organic Reactions . Evans PA. Wiley-VCH; Weinheim: 2005
    • 2d Akutagawa S. Top. Catal. 1997; 4: 271
    • 2e Otsuka S, Tani K. Synthesis 1991; 665
    • 3a Mantilli L, Mazet C. Chem. Lett. 2010; 40: 341
    • 3b Uma R, Crévisy C, Grée R. Chem. Rev. 2003; 103: 27
    • 3c Van der Drift RC, Bouwman E, Drent E. J. Organomet. Chem. 2002; 650: 1
    • 4a Inoue S, Takaya H, Tani K, Otsuka S, Sato T, Noyori R. J. Am. Chem. Soc. 1990; 112: 4897
    • 4b Tani K, Yamagata T, Akutagawa S, Kumobayashi H, Taketomi T, Takaya H, Miyashita A, Noyori R, Otsuka S. J. Am. Chem. Soc. 1984; 106: 5208
  • 5 Olah GA, Molnár A. Hydrocarbon Chemistry . 2nd ed Wiley Interscience; New York: 2003: 177

    • For related asymmetric organocatalytic alkyne/allene isomerization reactions:
    • 6a Liu H, Leow D, Huang K.-W, Tan C.-H. J. Am. Chem. Soc. 2009; 131: 7212
    • 6b Oku M, Arai S, Katayama K, Shioiri T. Synlett 2000; 493
    • 6c Inokuma T, Furukawa M, Suzuki Y, Kimachi T, Kobayashi Y, Takemoto Y. ChemCatChem 2012; 4: 983
    • 6d Jacobs TL, Dankner D. J. Org. Chem. 1957; 22: 1424
  • 7 A classic example would be the conversion of tartaric acid into mixtures containing meso- and rac-tartaric acid by heating in water at 170 °C: Pasteur L. C. R. Hebd. Seances Acad. Sci. 1852; 35: 176
  • 9 Japp FR, Moir J. J. Chem. Soc., Trans. 1900; 608
  • 10 Williams OF, Bailar JC. J. Am. Chem. Soc. 1959; 81: 4464
  • 11 Isomerization of amarine to isoamarine requires excess NaOH in ethylene glycol at 155 °C.10 Attempted isomerization of N-tosyl-amarine with cinchona alkaloids was not successful (Hintermann, L., unpublished result). The approach is pointless for free amarine, since isoamarine racemizes under relatively mild conditions: Busacca CA, Bartholomeyzik T, Cheekoori S, Grinberg N, Lee H, Ma S, Saha A, Shen S, Senanayake CH. J. Org. Chem. 2008; 73: 9756
    • 12a Guillen F, Fiaud J.-C. Tetrahedron Lett. 1999; 40: 2939
    • 12b Guillen F, Rivard M, Toffano M, Legros J.-Y, Daran J.-C, Fiaud J.-C. Tetrahedron 2002; 58: 5895
    • 12c Fiaud J.-C, Legros J.-Y. Tetrahedron Lett. 1991; 32: 5089

      A stoichiometric asymmetric protonation approach to the isomerization of 2 to 3 had already been reported:
    • 13a Guillen F, Moinet C, Fiaud J.-C. Bull. Soc. Chim. Fr. 1997; 134: 371
    • 13b For a related asymmetric alkylation approach: Blake AJ, Hume SC, Li W.-S, Simpkins NS. Tetrahedron 2002; 58: 4589
  • 14 Hintermann L, Schmitz M. Adv. Synth. Catal. 2008; 350: 1469
  • 15 Wu Y, Singh RP, Deng L. J. Am. Chem. Soc. 2011; 133: 12458
  • 16 Hintermann L, Schmitz M, Chen Y. Adv. Synth. Catal. 2010; 352: 2411
    • 17a McCormack WB. US 2663737, 1953
    • 17b McCormack WB. Org. Synth. 1963; 43: 73
    • 18a Campbell IG. M, Cookson RC, Hocking MB, Hughes AN. J. Chem. Soc. 1965; 2184
    • 18b Ezzell BR, Freedman LD. J. Org. Chem. 1970; 35: 241
    • 18c Lukas B, Roberts RM. G, Silver J, Wells AS. J. Organomet. Chem. 1983; 256: 103
    • 19a Cowley AH, Kemp RA, Lasch JG, Norman NC, Stewart CA. J. Am. Chem. Soc. 1983; 105: 7444
    • 19b Cowley AH, Kemp RA, Lasch JG, Norman NC, Stewart CA, Whittlesey BR, Wright TC. Inorg. Chem. 1986; 25: 740
    • 19c SooHoo CK, Baxter SG. J. Am. Chem. Soc. 1983; 105: 7443
    • 19d Polniaszek RP. J. Org. Chem. 1982; 57: 5189
    • 20a King RB, Sadanani ND. Synth. React. Inorg. Met.-Org. Chem. 1985; 15: 149
    • 20b Issleib K, Seidel W. Chem. Ber. 1959; 92: 2681
  • 21 In this abbreviated nomenclature for cyclic compounds, cis and trans indicate the relative position of the aryl group at C2 and/or C5 to the central oxo-substituent at phosphorus, which is of higher priority than the amino group.
  • 22 The crystal structures have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC 901663 (8d) and 901662 (9d).
  • 23 Bodalski R, Janecki T, Galdecki Z, Glowka ML. Phosphorus Sulfur Relat. Elem. 1982; 14: 15
  • 24 Pakulski Z, Koprowski M, Pietrusiewicz M. Tetrahedron 2003; 59: 8219
    • 25a Wang G.-W, Lu Q.-Q, Xia J.-J. Eur. J. Org. Chem. 2011; 4429
    • 25b Seiser T, Cramer N. Chem. Eur. J. 2010; 16: 3383
    • 25c Smith AB, Kingery-Wood J, Leenay TL, Nolen EG, Sunazuka T. J. Am. Chem. Soc. 1992; 114: 1438
    • 25d Wenkert E, Greenberg RS, Kim H.-S. Helv. Chim. Acta 1987; 70: 2159
    • 25e Carter MJ, Fleming I, Percival A. J. Chem. Soc., Perkin Trans. 1 1981; 2415
    • 25f Alder K, Günzl-Schumacher M. Chem. Ber. 1959; 92: 822
  • 26 Wenkert E, Leftin MH, Michelotti EL. J. Chem. Soc., Chem. Commun. 1984; 617

    • Precedence for base-mediated 2,5-dihydro-1H-phosphole to 4,5-dihydro-1H-phosphole rearrangements:
    • 27a Keglevich G, Forintos H, Keseru GM, Hegedus L, Toke L. Tetrahedron 2000; 56: 4823
    • 27b Tolmachev AA, Ivonin SP, Kharchenko AV, Lampeka RD, Kozlov ES. J. Gen. Chem. USSR (Engl. Transl.) 1991; 61: 852
  • 29 Obermayer D, Gutmann B, Kappe CO. Angew. Chem. Int. Ed. 2009; 48: 8321
  • 30 Hiemstra H, Wynberg H. J. Am. Chem. Soc. 1981; 103: 417
    • 31a Connon SJ. Chem. Commun. 2008; 2499
    • 31b Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
  • 32 The NMR method of ee determination tends to underestimate enantioselectivity. Concerning the chiral HPLC analysis of 5b, see: Hintermann L. J. Org. Chem. 2007; 72: 9790
  • 33 Pakulski Z, Demchuk OM, Kwiatosz R, Osinski PW, Swierczynska W, Pietrusiewicz KM. Tetrahedron: Asymmetry 2003; 14: 1459
  • 34 Chadwick DJ, Willbe C. J. Chem. Soc., Perkin Trans. 1 1977; 887
  • 35 See the Supporting Information for additional illustration or examples.
  • 36 Westheimer F. Chem. Rev. 1961; 61: 265
  • 37 Kresge AJ. Acc. Chem. Res. 1975; 8: 354
    • 38a Duhaime RM, Weedon AC. J. Am. Chem. Soc. 1987; 109: 2479
    • 38b Malhotra SK, Ringold HJ. J. Am. Chem. Soc. 1965; 87: 3228
  • 39 Lampin JP, Mathey F, Bartet B. Bull. Soc. Chim. Fr. 1971; 317
    • 40a Hols J, Gensow M.-N, Zayas O, Börner A. Curr. Org. Chem. 2007; 11: 61
    • 40b Galland A, Paris JM, Schlama T, Guillot R, Fiaud J.-C, Toffano M. Eur. J. Org. Chem. 2007; 863
    • 40c Pilkington CJ, Zanotti-Gerosa A. Org. Lett. 2003; 5: 1273
    • 40d Jackson M, Lennon IC. Tetrahedron Lett. 2007; 48: 1831
    • 40e Dobrota C, Toffano M, Fiaud J.-C. Tetrahedron Lett. 2004; 45: 8153
    • 40f Fox ME, Jackson M, Lennon IC, Klosin J, Abboud KA. J. Org. Chem. 2008; 73: 775
  • 41 Barton DH. R, Robinson CH. J. Chem. Soc. 1954; 3045
  • 42 Polniaszek RP, Foster AL. J. Org. Chem. 1991; 56: 3137
  • 43 For another NMR method of ee determination that also relies on the chirality of the sample itself, see: Feringa BL, Smaardijk A, Wynberg H. J. Am. Chem. Soc. 1985; 107: 4798
  • 44 Nolde C, Schürmann M, Mehring M. Z. Anorg. Allg. Chem. 2007; 633: 142
  • 45 Precedence: Suga T, Ohta S, Aoki T, Hirata T. Chem. Lett. 1985; 1331
  • 46 In our communication,14 we stated in Scheme 3 that the signs of the optical rotation were the same in CH2Cl2 and MeOH solution. While this is true for 5b, 15b and 1, it is wrong for 19. The same scheme also gave the wrong sign of rotation for Fiaud’s acid 1; the enantiomer (2R,5R)-1 is dextro-rotatory in both MeOH (this work) and CH2Cl2.12b The configurational assignments in that paper are not affected by these errors
  • 47 Love BE, Jones EG. J. Org. Chem. 1999; 64: 3755
  • 48 Hintermann L. Beilstein J. Org. Chem. 2007; 3: 22
  • 49 Maerkl G, Alig B. J. Organomet. Chem. 1984; 273: 1
  • 50 Obtained by hydrogenation of 4b over Pd/C with H2 (g), compare with ref. 12b.
  • 51 Hum G, Wooler K, Lee J, Taylor SD. Can. J. Chem. 2000; 78: 642