Synthesis 2013; 45(1): 40-44
DOI: 10.1055/s-0032-1316801
practical synthetic procedures
© Georg Thieme Verlag Stuttgart · New York

A Practical Protocol for the Hiyama Cross-Coupling Reaction Catalyzed by Palladium on Carbon

Yasunari Monguchi*
Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308109   Email: [email protected]   Email: [email protected]
,
Takayoshi Yanase
Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308109   Email: [email protected]   Email: [email protected]
,
Shigeki Mori
Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308109   Email: [email protected]   Email: [email protected]
,
Hironao Sajiki*
Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308109   Email: [email protected]   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 11 September 2012

Accepted after revision: 20 September 2012

Publication Date:
09 October 2012 (online)


Abstract

A method for the palladium on carbon (Pd/C) catalyzed cross-coupling reaction between aryl halides and trialkoxy(aryl)silanes in the presence of a small amount of water is established using tris(4-fluorophenyl)phosphine as the ligand. A range of biaryl compounds is prepared using this protocol.

Supporting Information

 
  • References


    • For reviews on the Hiyama cross-coupling, see:
    • 1a Hiyama T, Shirakawa E. In Handbook of Organopalladium Chemistry for Organic Synthesis . Vol. 1. Negishi E, de Meijere A. Wiley-Interscience; New York: 2002: 285
    • 1b Denmark SE, Sweis RF. Acc. Chem. Res. 2002; 35: 835
    • 1c Denmark SE, Ober MH. Aldrichimica Acta 2003; 36: 76
    • 1d Denmark SE, Regens CS. Acc. Chem. Res. 2008; 41: 1486
    • 1e Denmark SE, Liu JH.-C. Angew. Chem. Int. Ed. 2010; 49: 2

      For related papers before 2006, see reference 1.
    • 2a Shi S, Zhang Y. J. Org. Chem. 2007; 72: 5927
    • 2b Pan C, Liu M, Zhao L, Wu H, Ding J, Cheng J. Catal. Commun. 2008; 9: 1685
    • 2c Zhang L, Wu J. J. Am. Chem. Soc. 2008; 130: 12250
    • 2d Zhang L, Qing J, Yang P, Wu J. Org. Lett. 2008; 10: 4971
    • 2e Alacid E, Najera C. J. Org. Chem. 2008; 73: 2315
    • 2f Chen SN, Wu WY, Tsai FY. Tetrahedron 2008; 64: 8164
    • 2g So CM, Lee HW, Lau CP, Kwong FY. Org. Lett. 2009; 11: 317
    • 2h Denmark SE, Smith RC, Chang WT. T, Muhuhi JM. J. Am. Chem. Soc. 2009; 131: 3104
    • 2i Denmark SE, Werner NS. J. Am. Chem. Soc. 2010; 132: 3612
    • 2j Beaulieu L.-PB, Delvos LB, Charette AB. Org. Lett. 2010; 12: 1348
    • 2k Nakao Y, Takeda M, Matsumoto T, Hiyama T. Angew. Chem. Int. Ed. 2010; 49: 4447
    • 2l Molander GA, Iannazzo L. J. Org. Chem. 2011; 76: 9182
    • 2m Cheng K, Wang C, Ding Y, Song Q, Qi C, Zhang X.-M. J. Org. Chem. 2011; 76: 9261

      For reviews, see:
    • 3a Yin L, Liebscher J. Chem. Rev. 2007; 107: 133
    • 3b Climent MJ, Corma A, Iborra S. Chem. Rev. 2011; 111: 1072
    • 4a Pachon LD, Thathagar MB, Hartl F, Rothenberg G. Phys. Chem. Chem. Phys. 2006; 8: 151
    • 4b Ranu BC, Dey R, Chattopadhyay K. Tetrahedron Lett. 2008; 49: 3430
    • 4c Dey R, Chattopadhyay K, Ranu BC. J. Org. Chem. 2008; 73: 9461
  • 5 Srimani D, Sawoo S, Sarkar A. Org. Lett. 2007; 9: 3639
  • 6 Borkowski T, Subik P, Trzeciak AM, Wolowiec S. Molecules 2011; 16: 427
  • 7 Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. Wiley-Interscience; New York: 2001

    • For reviews on palladium on carbon catalyzed cross-coupling reactions, see:
    • 8a Nishida M, Tagata T. J. Synth. Org. Chem. Jpn. 2004; 62: 737
    • 8b Seki M. J. Synth. Org. Chem. Jpn. 2006; 64: 853
    • 8c Seki M. Synthesis 2006; 2975
    • 8d Felpin F.-X, Ayad T, Mitra S. Eur. J. Org. Chem. 2006; 2679
    • 8e Phan NT. S, Sluys MV. D, Jones CW. Adv. Synth. Catal. 2006; 348: 609
    • 8f Felpin F.-X, Fouquet E. ChemSusChem 2008; 1: 718
    • 8g Pal M. Synlett 2009; 2896
    • 8h Lamblin M, Nassar-Hardy L, Hierso J.-C, Fouquet E, Felpin F.-X. Adv. Synth. Catal. 2010; 352: 33
    • 8i Molnár A. Chem. Rev. 2011; 111: 2251
    • 8j Djakovitch L, Batail N, Genelot M. Molecules 2011; 16: 5241
    • 8k Djakovitch L, Koehler K, de Vries JG In Nanoparticles and Catalysis . Astruc D. Wiley-VCH; Weinheim: 2001: 303
    • 9a Sajiki H, Kurita T, Kozaki A, Zhang G, Kitamura Y, Maegawa T, Hirota K. J. Chem. Res. 2004; 593 ; erratum in J. Chem. Res. 2005, 344
    • 9b Sajiki H, Kurita T, Kozaki A, Zhang G, Kitamura Y, Maegawa T, Hirota K. Synthesis 2005; 537 ; erratum in Synthesis 2005, 852
    • 9c Sajiki H, Zhang G, Kitamura Y, Maegawa T, Hirota K. Synlett 2005; 619 , erratum in Synlett 2005, 1046
    • 9d Maegawa T, Kitamura Y, Sako S, Udzu T, Sakurai A, Tanaka A, Kobayashi Y, Endo K, Bora U, Kurita T, Kozaki A, Monguchi Y, Sajiki H. Chem.–Eur. J. 2007; 13: 5937
    • 9e Kitamura Y, Sakurai A, Udzu T, Maegawa T, Monguchi Y, Sajiki H. Tetrahedron 2007; 63: 10596
    • 9f Kitamura Y, Sako S, Udzu T, Tsutui A, Maegawa T, Monguchi Y, Sajiki H. Chem. Commun. 2007; 5069
    • 9g Mori S, Yanase T, Aoyagi S, Monguchi Y, Maegawa T, Sajiki H. Chem.–Eur. J. 2008; 14: 6994
    • 9h Monguchi Y, Kitamoto K, Ikawa T, Maegawa T, Sajiki H. Adv. Synth. Catal. 2008; 350: 2767
    • 9i Kitamura Y, Sako S, Tsutsui A, Monguchi Y, Maegawa T, Kitade Y, Sajiki H. Adv. Synth. Catal. 2010; 352: 718
    • 9j Yabe Y, Maegawa T, Monguchi Y, Sajiki H. Tetrahedron 2010; 66: 8654
    • 9k Monguchi Y, Hattori T, Miyamoto Y, Yanase T, Sawama Y, Sajiki H. Adv. Synth. Catal. 2012; 354: 2561
  • 10 Komáromi A, Szabó F, Novák Z. Tetrahedron Lett. 2010; 51: 54
  • 11 Yanase T, Mori S, Monguchi Y, Sajiki H. Chem. Lett. 2011; 40: 910
  • 12 Yanase T, Monguchi Y, Sajiki H. RSC Adv. 2012; 2: 590

    • For the procedure for the preparation of dried TBAF, see:
    • 13a Kim DW, Jeong H.-J, Lim ST, Sohn M.-H. Angew. Chem. Int. Ed. 2008; 47: 8404
    • 13b Sharma RK, Fly JL. J. Org. Chem. 1983; 48: 2112
    • 13c Cox DP, Terpinski J, Lawrynowicz W. J. Org. Chem. 1984; 49: 3216
  • 14 The palladium particle size and carbon surface area of the 10% Pd/C (K-type, N.E. Chemcat Corporation) used in this study are approximately 5 nm and 1100 m2/g, respectively.
  • 15 The protocol and outcome of the cross-coupling between 1-iodo-4-nitrobenzene and triethoxy(phenyl)silane was not affected when 10% Pd/C obtained from different suppliers was used (see Table 6).
  • 16 When Pd(OAc)2 (5 mol%), as a homogeneous catalyst, and (4-FC6H4)3P (20 mol%) were used for the cross-coupling of 1-iodo-4-nitrobenzene with triethoxy(phenyl)silane (1.5 equiv) in 4.8% aqueous toluene at 120 °C (bath temperature), the desired 4-nitrobiphenyl was obtained in 72% yield, together with the homo-coupled product derived from the iodide, 4,4′-dinitrobiphenyl, in 5% yield. The use of 10% Pd/C was more appropriate for the present conditions compared to those applied in Table 3, entry 7; see also the supporting information in our previous communication.11

    • In the presence of a small amount of water, the alkoxy groups of the triethoxy(aryl)silane would be hydrated into the corresponding hydroxy groups, and the electrophilicity of the silicon atom would increase. On the other hand, addition of an excess amount of water resulted in the formation of inactive caged siloxane derivatives, see reference 11 and:
    • 17a Hasegawa I, Ino K, Ohnishi H. Appl. Organomet. Chem. 2003; 17: 287
    • 17b Iwamura T, Adachi K, Chujo Y. Chem. Lett. 2010; 39: 354
    • 18a Feuerstein M, Doucet H, Santelli M. J. Organomet. Chem. 2003; 687: 327
    • 18b Navarro O, Marion N, Mei J, Nolan SP. Chem.–Eur. J. 2006; 12: 5142
    • 18c Shi S, Zhang Y. Green Chem. 2008; 10: 868