Synthesis 2012; 44(21): 3285-3295
DOI: 10.1055/s-0032-1316539
practical synthetic procedures
© Georg Thieme Verlag Stuttgart · New York

Formation of Indoles, Dihydroisoquinolines, and Dihydroquinolines by Ruthenium-Catalyzed Heterocyclizations

Alejandro Varela-Fernández
Departamento de Química Orgánica y Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain, Fax: +34(88)1815704   Email: [email protected]
,
Jesús A. Varela
Departamento de Química Orgánica y Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain, Fax: +34(88)1815704   Email: [email protected]
,
Carlos Saá*
Departamento de Química Orgánica y Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain, Fax: +34(88)1815704   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 03 May 2012

Accepted after revision: 12 May 2012

Publication Date:
05 July 2012 (online)


Abstract

Indoles, dihydroisoquinolines, and dihydroquinolines were efficiently prepared by ruthenium-catalyzed heterocyclizations of aromatic­ homo- and bis-homopropargyl amines/amides in the presence of an amine/ammonium base-acid pair. These regioselective 5-endo and 6-endo cyclizations most probably occur by nucleophilic trapping of key ruthenium-vinylidene intermediates.

 
  • References

  • 1 Comprehensive Heterocyclic Chemistry III . Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Amsterdam: 2008
    • 2a Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
    • 2b D’Souza DM, Mueller TJ. J. Chem. Soc. Rev. 2007; 36: 1095

      For reviews of metal-vinylidenes in catalysis, see:
    • 3a Bruce MI. Chem. Rev. 1991; 91: 197
    • 3b Bruneau C, Dixneuf PH. Acc. Chem. Res. 1999; 32: 311
    • 3c Trost BM. Acc. Chem. Res. 2002; 35: 695
    • 3d Bruneau C, Dixneuf PH. Angew. Chem. Int. Ed. 2006; 45: 2176
    • 3e Trost BM, McClory A. Chem.–Asian J. 2008; 3: 164
  • 4 McDonald FE, Reddy KS, Diaz Y. J. Am. Chem. Soc. 2000; 122: 4304 ; and references cited therein
    • 5a Trost BM, Rhee YH. J. Am. Chem. Soc. 1999; 121: 11680
    • 5b Trost BM, Rhee YH. J. Am. Chem. Soc. 2002; 124: 2528
  • 6 Trost BM, Rhee YH. J. Am. Chem. Soc. 2003; 125: 7482
    • 7a Alcazar E, Pletcher JM, McDonald FE. Org. Lett. 2004; 6: 3877
    • 7b Koo B, McDonald FE. Org. Lett. 2007; 9: 1737
  • 8 Varela-Fernández A, González-Rodríguez C, Varela JA, Castedo L, Saá C. Org. Lett. 2009; 11: 5350
  • 9 Varela-Fernández A, García-Yebra C, Varela JA, Esteruelas MA, Saá C. Angew. Chem. Int. Ed. 2010; 49: 4278
  • 10 McDonald FE, Chatterjee AK. Tetrahedron Lett. 1997; 38: 7687
  • 11 Trost BM, McClory A. Angew. Chem. Int. Ed. 2007; 46: 2074
  • 12 Nair RN, Lee PJ, Rheingold AL, Grotjahn DB. Chem.–Eur. J. 2010; 16: 7992
  • 13 Varela-Fernández A, Varela JA, Saá C. Adv. Synth. Catal. 2011; 353: 1933