Horm Metab Res 2012; 44(10): 732-740
DOI: 10.1055/s-0032-1316331
Review
© Georg Thieme Verlag KG Stuttgart · New York

Relative Functions of Gαs and its Extra-large Variant XLαs in the Endocrine System

M. Bastepe
1   Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
› Author Affiliations
Further Information

Publication History

received 04 January 2012

accepted 23 May 2012

Publication Date:
22 June 2012 (online)

Abstract

Gαs is a ubiquitous signaling protein necessary for the actions of many neurotransmitters, hormones, and autocrine/paracrine factors. Loss-of-function mutations within the gene encoding Gαs, GNAS, are responsible for multiple human diseases, including Albright’s Hereditary Osteodystrophy, progressive osseous heteroplasia, and pseudohypoparathyroidism. Gain-of-function mutations in the same gene are found in various endocrine and nonendocrine tumors and in patients with McCune-Albright Syndrome and fibrous dysplasia of bone. In addition to Gαs, GNAS gives rise to multiple additional coding and noncoding transcripts. Among those, XLαs is a paternally expressed product that is partially identical to Gαs. This article reviews the cellular actions of Gαs and XLαs, focusing on the significance of XLαs relative to Gαs in mammalian physiology and human disease.

 
  • References

  • 1 Weinstein LS, Gejman PV, Friedman E, Kadowaki T, Collins RM, Gershon ES, Spiegel AM. Mutations of the Gs alpha-subunit gene in Albright hereditary osteodystrophy detected by denaturing gradient gel electrophoresis. Proc Natl Acad Sci USA 1990; 87: 8287-8290
  • 2 Patten JL, Johns DR, Valle D, Eil C, Gruppuso PA, Steele G, Smallwood PM, Levine MA. Mutation in the gene encoding the stimulatory G protein of adenylate cyclase in Albright's hereditary osteodystrophy. New Engl J Med 1990; 322: 1412-1419
  • 3 Cabrera-Vera TM, Vanhauwe J, Thomas TO, Medkova M, Preininger A, Mazzoni MR, Hamm HE. Insights into G protein structure, function, and regulation. Endocr Rev 2003; 24: 765-781
  • 4 Spiegel AM. Introduction to G-protein-coupled signal transduction and human disease. In: Spiegel AM. (ed.) G proteins, receptors, and disease. Totowa, New Jersey: Humana Press; 1998: 1-21
  • 5 Kozasa T, Itoh H, Tsukamoto T, Kaziro Y. Isolation and characterization of the human Gsa gene. Proc Natl Acad Sci USA 1988; 85: 2081-2085
  • 6 Gejman PV, Weinstein LS, Martinez M, Spiegel AM, Cao Q, Hsieh WT, Hoehe MR, Gershon ES. Genetic mapping of the Gs-a subunit gene (GNAS1) to the distal long arm of chromosome 20 using a polymorphism detected by denaturing gradient gel electrophoresis. Genomics 1991; 9: 782-783
  • 7 Rao VV, Schnittger S, Hansmann I. G protein Gs alpha (GNAS 1), the probable candidate gene for Albright hereditary osteodystrophy, is assigned to human chromosome 20q12–q13.2. Genomics 1991; 10: 257-261
  • 8 Levine MA, Modi WS, O’Brien SJ. Mapping of the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase (GNAS1) to 20q13.2–q13.3 in human by in situ hybridization. Genomics 1991; 11: 478-479
  • 9 Yu S, Yu D, Lee E, Eckhaus M, Lee R, Corria Z, Accili D, Westphal H, Weinstein LS. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein a-subunit (Gsa) knockout mice is due to tissue-specific imprinting of the Gsa gene. Proc Natl Acad Sci USA 1998; 95: 8715-8720
  • 10 Albright F, Burnett CH, Smith PH, Parson W. Pseudohypoparathyroidism – an example of “Seabright-Bantam syndrome”. Endocrinology 1942; 30: 922-932
  • 11 Long DN, McGuire S, Levine MA, Weinstein LS, Germain-Lee EL. Body mass index differences in pseudohypoparathyroidism type 1a versus pseudopseudohypoparathyroidism may implicate paternal imprinting of Galpha(s) in the development of human obesity. J Clin Endocrinol Metab 2007; 92: 1073-1079
  • 12 Mouallem M, Shaharabany M, Weintrob N, Shalitin S, Nagelberg N, Shapira H, Zadik Z, Farfel Z. Cognitive impairment is prevalent in pseudohypoparathyroidism type Ia, but not in pseudopseudohypoparathyroidism: possible cerebral imprinting of Gsalpha. Clin Endocrinol (Oxf) 2008; 68: 233-239
  • 13 Levine MA, Downs Jr RW, Moses AM, Breslau NA, Marx SJ, Lasker RD, Rizzoli RE, Aurbach GD, Spiegel AM. Resistance to multiple hormones in patients with pseudohypoparathyroidism. Association with deficient activity of guanine nucleotide regulatory protein. Am J Med 1983; 74: 545-556
  • 14 Mallet E, Carayon P, Amr S, Brunelle P, Ducastelle T, Basuyau JP, de Menibus CH. Coupling defect of thyrotropin receptor and adenylate cyclase in a pseudohypoparathyroid patient. J Clin Endocrinol Metab 1982; 54: 1028-1032
  • 15 Wolfsdorf JI, Rosenfield RL, Fang VS, Kobayashi R, Razdan AK, Kim MH. Partial gonadotrophin-resistance in pseudohypoparathyroidism. Acta Endocrinol (Copenh) 1978; 88: 321-328
  • 16 Mantovani G, Maghnie M, Weber G, De Menis E, Brunelli V, Cappa M, Loli P, Beck-Peccoz P, Spada A. Growth hormone-releasing hormone resistance in pseudohypoparathyroidism type ia: new evidence for imprinting of the Gs alpha gene. J Clin Endocrinol Metab 2003; 88: 4070-4074
  • 17 Germain-Lee EL, Groman J, Crane JL, Jan de Beur SM, Levine MA. Growth hormone deficiency in pseudohypoparathyroidism type 1a: another manifestation of multihormone resistance. J Clin Endocrinol Metab 2003; 88: 4059-4069
  • 18 Albright F, Forbes AP, Henneman PH. Pseudo-pseudohypoparathyroidism. Trans Assoc Am Physicians 1952; 65: 337-350
  • 19 Levine MA, Ahn TG, Klupt SF, Kaufman KD, Smallwood PM, Bourne HR, Sullivan KA, Van Dop C. Genetic deficiency of the alpha subunit of the guanine nucleotide-binding protein Gs as the molecular basis for Albright hereditary osteodystrophy. Proc Natl Acad Sci USA 1988; 85: 617-621
  • 20 Patten JL, Levine MA. Immunochemical analysis of the a-subunit of the stimulatory G-protein of adenylyl cyclase in patients with Albright’s hereditary osteodystrophy. J Clin Endocrinol Metab 1990; 71: 1208-1214
  • 21 Carter A, Bardin C, Collins R, Simons C, Bray P, Spiegel A. Reduced expression of multiple forms of the a subunit of the stimulatory GTP-binding protein in pseudohypoparathyroidism type Ia. Proc Natl Acad Sci USA 1987; 84: 7266-7269
  • 22 Davies AJ, Hughes HE. Imprinting in Albright’s hereditary osteodystrophy. J Med Genet 1993; 30: 101-103
  • 23 Farfel Z, Brothers VM, Brickman AS, Conte F, Neer R, Bourne HR. Pseudohypoparathyroidism: inheritance of deficient receptor-cyclase coupling activity. Proc Natl Acad Sci USA 1981; 78: 3098-3102
  • 24 Linglart A, Carel JC, Garabedian M, Le T, Mallet E, Kottler ML. GNAS1 Lesions in Pseudohypoparathyroidism Ia and Ic: Genotype Phenotype Relationship and Evidence of the Maternal Transmission of the Hormonal Resistance. J Clin Endocrinol Metab 2002; 87: 189-197
  • 25 Linglart A, Mahon MJ, Kerachian MA, Berlach DM, Hendy GN, Jüppner H, Bastepe M. Coding GNAS mutations leading to hormone resistance impair in vitro agonist- and cholera toxin-induced adenosine cyclic 3′,5′-monophosphate formation mediated by human XLas. Endocrinology 2006; 147: 2253-2262
  • 26 Thiele S, de Sanctis L, Werner R, Grotzinger J, Aydin C, Jüppner H, Bastepe M, Hiort O. Functional characterization of GNAS mutations found in patients with pseudohypoparathyroidism type Ic defines a new subgroup of pseudohypoparathyroidism affecting selectively Gsalpha-receptor interaction. Hum Mutat 2011; 32: 653-660
  • 27 Liu J, Litman D, Rosenberg M, Yu S, Biesecker L, Weinstein L. A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J Clin Invest 2000; 106: 1167-1174
  • 28 Levine MA. Pseudohypoparathyroidism. In: Bilezikian JP, Raisz LG, Rodan GA. (eds.). Principles of Bone Biology. New York: Academic Press; 2002. 2. 1137-1163
  • 29 Bastepe M, Pincus JE, Sugimoto T, Tojo K, Kanatani M, Azuma Y, Kruse K, Rosenbloom AL, Koshiyama H, Jüppner H. Positional dissociation between the genetic mutation responsible for pseudohypoparathyroidism type Ib and the associated methylation defect at exon A/B: evidence for a long-range regulatory element within the imprinted GNAS1 locus. Hum Mol Genet 2001; 10: 1231-1241
  • 30 Liu J, Erlichman B, Weinstein LS. The stimulatory G protein a-subunit Gsa is imprinted in human thyroid glands: implications for thyroid function in pseudohypoparathyroidism types 1A and 1B. J Clin Endocrinol Metabol 2003; 88: 4336-4341
  • 31 Bastepe M, Lane AH, Jüppner H. Paternal uniparental isodisomy of chromosome 20q (patUPD20q) – and the resulting changes in GNAS1 methylation – as a plausible cause of pseudohypoparathyroidism. Am J Hum Genet 2001; 68: 1283-1289
  • 32 Jüppner H, Schipani E, Bastepe M, Cole DEC, Lawson ML, Mannstadt M, Hendy GN, Plotkin H, Koshiyama H, Koh T, Crawford JD, Olsen BR, Vikkula M. The gene responsible for pseudohypoparathyroidism type Ib is paternally imprinted and maps in four unrelated kindreds to chromosome 20q13.3. Proc Natl Acad Sci USA 1998; 95: 11798-11803
  • 33 de Nanclares GP, Fernandez-Rebollo E, Santin I, Garcia-Cuartero B, Gaztambide S, Menendez E, Morales MJ, Pombo M, Bilbao JR, Barros F, Zazo N, Ahrens W, Jüppner H, Hiort O, Castano L, Bastepe M. Epigenetic defects of GNAS in patients with pseudohypoparathyroidism and mild features of Albright’s hereditary osteodystrophy. J Clin Endocrinol Metab 2007; 92: 2370-2373
  • 34 Unluturk U, Harmanci A, Babaoglu M, Yasar U, Varli K, Bastepe M, Bayraktar M. Molecular diagnosis and clinical characterization of pseudohypoparathyroidism type-Ib in a patient with mild Albright’s hereditary osteodystrophy-like features, epileptic seizures, and defective renal handling of uric acid. Am J Med Sci 2008; 336: 84-90
  • 35 Mariot V, Maupetit-Mehouas S, Sinding C, Kottler ML, Linglart A. A maternal epimutation of GNAS leads to Albright osteodystrophy and parathyroid hormone resistance. J Clin Endocrinol Metab 2008; 93: 661-665
  • 36 Mantovani G, de Sanctis L, Barbieri AM, Elli FM, Bollati V, Vaira V, Labarile P, Bondioni S, Peverelli E, Lania AG, Beck-Peccoz P, Spada A. Pseudohypoparathyroidism and GNAS epigenetic defects: clinical evaluation of albright hereditary osteodystrophy and molecular analysis in 40 patients. J Clin Endocrinol Metab 2010; 95: 651-658
  • 37 Sanchez J, Perera E, Jan de Beur S, Ding C, Dang A, Berkovitz GD, Levine MA. Madelung-like deformity in pseudohypoparathyroidism type 1b. J Clin Endocrinol Metab 2011; 96: E1507-E1511
  • 38 Bastepe M, Fröhlich LF, Hendy GN, Indridason OS, Josse RG, Koshiyama H, Körkkö J, Nakamoto JM, Rosenbloom AL, Slyper AH, Sugimoto T, Tsatsoulis A, Crawford JD, Jüppner H. Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. J Clin Invest 2003; 112: 1255-1263
  • 39 Linglart A, Gensure RC, Olney RC, Jüppner H, Bastepe M. A Novel STX16 Deletion in Autosomal Dominant Pseudohypoparathyroidism Type Ib Redefines the Boundaries of a cis-Acting Imprinting Control Element of GNAS. Am J Hum Genet 2005; 76: 804-814
  • 40 Bastepe M, Fröhlich LF, Linglart A, Abu-zahra HS, Tojo K, Ward LM, Jüppner H. Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type-Ib. Nat Genet 2005; 37: 25-37
  • 41 Chillambhi S, Turan S, Hwang DY, Chen HC, Jüppner H, Bastepe M. Deletion of the Noncoding GNAS Antisense Transcript Causes Pseudohypoparathyroidism Type Ib and Biparental Defects of GNAS Methylation in cis. J Clin Endocrinol Metab 2010; 95: 3993-4002
  • 42 Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989; 340: 692-696
  • 43 Kalfa N, Lumbroso S, Boulle N, Guiter J, Soustelle L, Costa P, Chapuis H, Baldet P, Sultan C. Activating mutations of Gsalpha in kidney cancer. J Urol 2006; 176: 891-895
  • 44 Nault JC, Fabre M, Couchy G, Pilati C, Jeannot E, Tran Van Nhieu J, Saint-Paul MC, De Muret A, Redon MJ, Buffet C, Salenave S, Balabaud C, Prevot S, Labrune P, Bioulac-Sage P, Scoazec JY, Chanson P, Zucman-Rossi J. GNAS-activating mutations define a rare subgroup of inflammatory liver tumors characterized by STAT3 activation. J Hepatol 2012; 56: 184-191
  • 45 Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, Kantarjian H, Raza A, Levine RL, Neuberg D, Ebert BL. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 2011; 364: 2496-2506
  • 46 McCune D. Osteitis fibrosa cystica; the case of a nine-year old girl who also exhibits precocious puberty, multiple pigmentation of the skin and hyperthyroidism. Am J Dis Child 1936; 52: 743-744
  • 47 Albright F, Butler A, Hampton A, Smith P. Syndrome characterized by osteitis fibrosa disseminata, areas of pigmentation and endocrine dysfunction, with precocious puberty in females. New Engl J Med 1937; 216: 727-746
  • 48 Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. New Engl J Med 1991; 325: 1688-1695
  • 49 Schwindinger WF, Francomano CA, Levine MA. Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune-Albright syndrome. Proc Natl Acad Sci USA 1992; 89: 5152-5156
  • 50 Happle R. The McCune-Albright syndrome: a lethal gene surviving by mosaicism. Clin Genet 1986; 29: 321-324
  • 51 Idowu BD, Al-Adnani M, O’Donnell P, Yu L, Odell E, Diss T, Gale RE, Flanagan AM. A sensitive mutation-specific screening technique for GNAS1 mutations in cases of fibrous dysplasia: the first report of a codon 227 mutation in bone. Histopathology 2007; 50: 691-704
  • 52 Ischia R, Lovisetti-Scamihorn P, Hogue-Angeletti R, Wolkersdorfer M, Winkler H, Fischer-Colbrie R. Molecular cloning and characterization of NESP55, a novel chromogranin-like precursor of a peptide with 5-HT1B receptor antagonist activity. J Biol Chem 1997; 272: 11657-11662
  • 53 Kehlenbach RH, Matthey J, Huttner WB. XLas is a new type of G protein (Erratum in Nature 1995; 375: 253). Nature 1994; 372: 804-809
  • 54 Swaroop A, Agarwal N, Gruen JR, Bick D, Weissman SM. Differential expression of novel Gs alpha signal transduction protein cDNA species. Nucleic Acids Res 1991; 19: 4725-4729
  • 55 Ishikawa Y, Bianchi C, Nadal-Ginard B, Homcy CJ. Alternative promoter and 5′ exon generate a novel Gsa mRNA. J Biol Chem 1990; 265: 8458-8462
  • 56 Hayward B, Bonthron D. An imprinted antisense transcript at the human GNAS1 locus. Hum Mol Genet 2000; 9: 835-841
  • 57 Wroe SF, Kelsey G, Skinner JA, Bodle D, Ball ST, Beechey CV, Peters J, Williamson CM. An imprinted transcript, antisense to Nesp, adds complexity to the cluster of imprinted genes at the mouse Gnas locus. Proc Natl Acad Sci USA 2000; 97: 3342-3346
  • 58 Hayward BE, Moran V, Strain L, Bonthron DT. Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins. Proc Natl Acad Sci USA 1998; 95: 15475-15480
  • 59 Peters J, Wroe SF, Wells CA, Miller HJ, Bodle D, Beechey CV, Williamson CM, Kelsey G. A cluster of oppositely imprinted transcripts at the Gnas locus in the distal imprinting region of mouse chromosome 2. Proc Natl Acad Sci USA 1999; 96: 3830-3835
  • 60 Hayward B, Kamiya M, Strain L, Moran V, Campbell R, Hayashizaki Y, Bronthon DT. The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. Proc Natl Acad Sci USA 1998; 95: 10038-10043
  • 61 Liu J, Yu S, Litman D, Chen W, Weinstein L. Identification of a methylation imprint mark within the mouse gnas locus. Mol Cell Biol 2000; 20: 5808-5817
  • 62 Zheng H, Radeva G, McCann JA, Hendy GN, Goodyer CG. Gas transcripts are biallelically expressed in the human kidney cortex: implications for pseudohypoparathyroidism type Ib. J Clin Endocrinol Metab 2001; 86: 4627-4629
  • 63 Campbell R, Gosden CM, Bonthron DT. Parental origin of transcription from the human GNAS1 gene. J Med Genet 1994; 31: 607-614
  • 64 Hayward B, Barlier A, Korbonits M, Grossman A, Jacquet P, Enjalbert A, Bonthron D. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J. Clin. Invest 2001; 107: R31-R36
  • 65 Mantovani G, Ballare E, Giammona E, Beck-Peccoz P, Spada A. The Gsalpha Gene: Predominant Maternal Origin of Transcription in Human Thyroid Gland and Gonads. J Clin Endocrinol Metab 2002; 87: 4736-4740
  • 66 Puzhko S, Goodyer CG, Mohammad AK, Canaff L, Misra M, Jüppner H, Bastepe M, Hendy GN. Parathyroid hormone signaling via Galphas is selectively inhibited by an NH(2)-terminally truncated Galphas: Implications for pseudohypoparathyroidism. J Bone Miner Res 2011; 26: 2473-2485
  • 67 Li T, Vu TH, Zeng ZL, Nguyen BT, Hayward BE, Bonthron DT, Hu JF, Hoffman AR. Tissue-specific expression of antisense and sense transcripts at the imprinted Gnas locus. Genomics 2000; 69: 295-304
  • 68 Pasolli H, Klemke M, Kehlenbach R, Wang Y, Huttner W. Characterization of the extra-large G protein alpha-subunit XLalphas. I. Tissue distribution and subcellular localization. J Biol Chem 2000; 275: 33622-33632
  • 69 Pasolli H, Huttner W. Expression of the extra-large G protein alpha-subunit XLalphas in neuroepithelial cells and young neurons during development of the rat nervous system. Neurosci Lett 2001; 301: 119-122
  • 70 Liu Z, Segawa H, Aydin C, Reyes M, Erben RG, Weinstein LS, Chen M, Marshansky V, Frohlich LF, Bastepe M. Transgenic Overexpression of the Extra-Large Gs{alpha} Variant XL{alpha}s Enhances Gs{alpha}-Mediated Responses in the Mouse Renal Proximal Tubule in Vivo. Endocrinology 2011; 152: 1222-1233
  • 71 Pignolo RJ, Xu M, Russell E, Richardson A, Kaplan J, Billings PC, Kaplan FS, Shore EM. Heterozygous inactivation of Gnas in adipose-derived mesenchymal progenitor cells enhances osteoblast differentiation and promotes heterotopic ossification. J Bone Miner Res 2011; 26: 2647-2655
  • 72 Krechowec SO, Burton KL, Newlaczyl AU, Nunn N, Vlatkovic N, Plagge A. Postnatal Changes in the Expression Pattern of the Imprinted Signalling Protein XLalphas Underlie the Changing Phenotype of Deficient Mice. PLoS One 2012; 7: e29753
  • 73 Plagge A, Gordon E, Dean W, Boiani R, Cinti S, Peters J, Kelsey G. The imprinted signaling protein XLalphas is required for postnatal adaptation to feeding. Nat Genet 2004; 36: 818-826
  • 74 Michienzi S, Cherman N, Holmbeck K, Funari A, Collins MT, Bianco P, Robey PG, Riminucci M. GNAS transcripts in skeletal progenitors: evidence for random asymmetric allelic expression of Gs{alpha}. Hum Mol Genet 2007; 16: 1921-1930
  • 75 Mariot V, Wu JY, Aydin C, Mantovani G, Mahon MJ, Linglart A, Bastepe M. Potent constitutive cyclic AMP-generating activity of XLalphas implicates this imprinted GNAS product in the pathogenesis of McCune-Albright Syndrome and fibrous dysplasia of bone. Bone 2011; 48: 312-320
  • 76 Xie T, Plagge A, Gavrilova O, Pack S, Jou W, Lai EW, Frontera M, Kelsey G, Weinstein LS. The alternative stimulatory G protein alpha-subunit XLalphas is a critical regulator of energy and glucose metabolism and sympathetic nerve activity in adult mice. J Biol Chem 2006; 281: 18989-18999
  • 77 Klemke M, Pasolli H, Kehlenbach R, Offermanns S, Schultz G, Huttner W. Characterization of the extra-large G protein alpha-subunit XLalphas. II. Signal transduction properties. J Biol Chem 2000; 275: 33633-33640
  • 78 Liu Z, Turan S, Wehbi VL, Vilardaga JP, Bastepe M. Extra-long Galphas variant XLalphas protein escapes activation-induced subcellular redistribution and is able to provide sustained signaling. J Biol Chem 2011; 286: 38558-38569
  • 79 Bastepe M, Gunes Y, Perez-Villamil B, Hunzelman J, Weinstein LS, Jüppner H. Receptor-Mediated Adenylyl Cyclase Activation Through XLalphas, the Extra-Large Variant of the Stimulatory G Protein alpha-Subunit. Mol Endocrinol 2002; 16: 1912-1919
  • 80 Ugur O, Jones TL. A proline-rich region and nearby cysteine residues target XLalphas to the Golgi complex region. Mol Biol Cell 2000; 11: 1421-1432
  • 81 Levis MJ, Bourne HR. Activation of the alpha subunit of Gs in intact cells alters its abundance, rate of degradation, and membrane avidity. J Cell Biol 1992; 119: 1297-1307
  • 82 Wedegaertner PB, Bourne HR, von Zastrow M. Activation-induced subcellular redistribution of Gs alpha. Mol Biol Cell 1996; 7: 1225-1233
  • 83 Aydin C, Aytan N, Mahon MJ, Tawfeek HA, Kowall NW, Dedeoglu A, Bastepe M. Extralarge XLas (XXLas), a variant of stimulatory G protein alpha-subunit (Gsα), is a distinct, membrane-anchored GNAS product that can mimic Gsa. Endocrinology 2009; 150: 3567-3575
  • 84 Wedegaertner PB, Chu DH, Wilson PT, Levis MJ, Bourne HR. Palmitoylation is required for signaling functions and membrane attachment of Gq alpha and Gs alpha. J Biol Chem 1993; 268: 25001-25008
  • 85 Wedegaertner PB, Bourne HR. Activation and depalmitoylation of Gs alpha. Cell 1994; 77: 1063-1070
  • 86 Wedegaertner PB, Wilson PT, Bourne HR. Lipid modifications of trimeric G proteins. J Biol Chem 1995; 270: 503-506
  • 87 Iiri T, Backlund Jr PS, Jones TL, Wedegaertner PB, Bourne HR. Reciprocal regulation of Gs alpha by palmitate and the beta gamma subunit. Proc Natl Acad Sci USA 1996; 93: 14592-14597
  • 88 Evanko DS, Thiyagarajan MM, Wedegaertner PB. Interaction with Gbetagamma is required for membrane targeting and palmitoylation of Galpha(s) and Galpha(q). J Biol Chem 2000; 275: 1327-1336
  • 89 Hughes TE, Zhang H, Logothetis DE, Berlot CH. Visualization of a functional Galpha q-green fluorescent protein fusion in living cells. Association with the plasma membrane is disrupted by mutational activation and by elimination of palmitoylation sites, but not be activation mediated by receptors or AlF4. J Biol Chem 2001; 276: 4227-4235
  • 90 Evanko DS, Thiyagarajan MM, Siderovski DP, Wedegaertner PB. Gbeta gamma isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Galphas and Galphaq. J Biol Chem 2001; 276: 23945-23953
  • 91 Makita N, Sato J, Rondard P, Fukamachi H, Yuasa Y, Aldred MA, Hashimoto M, Fujita T, Iiri T. Human G(salpha) mutant causes pseudohypoparathyroidism type Ia/neonatal diarrhea, a potential cell-specific role of the palmitoylation cycle. Proc Natl Acad Sci USA 2007; 104: 17424-17429
  • 92 Kaya AI, Ugur O, Oner SS, Bastepe M, Onaran HO. Coupling of {beta}2-adrenoceptors to XL{alpha}s and G{alpha}s: A new insight into ligand-induced G protein activation. J Pharmacol Exp Ther 2009; 329: 350-359
  • 93 Bray P, Carter A, Simons C, Guo V, Puckett C, Kamholz J, Spiegel A, Nirenberg M. Human cDNA clones for four species of G alpha s signal transduction protein. Proc Natl Acad Sci USA 1986; 83: 8893-8897
  • 94 Robishaw JD, Smigel MD, Gilman AG. Molecular basis for two forms of the G protein that stimulates adenylate cyclase. J Biol Chem 1986; 261: 9587-9590
  • 95 Crawford JA, Mutchler KJ, Sullivan BE, Lanigan TM, Clark MS, Russo AF. Neural expression of a novel alternatively spliced and polyadenylated Gs alpha transcript. J Biol Chem 1993; 268: 9879-9885
  • 96 Abramowitz J, Grenet D, Birnbaumer M, Torres HN, Birnbaumer L. XLalphas the extra-long form of the alpha-subunit of the Gs G protein, is significantly longer than suspected, and so is its companion Alex. Proc Natl Acad Sci USA 2004; 101: 8366-8371
  • 97 Klemke M, Kehlenbach RH, Huttner WB. Two overlapping reading frames in a single exon encode interacting proteins – a novel way of gene usage. Embo J 2001; 20: 3849-3860
  • 98 Freson K, Jaeken J, Van Helvoirt M, de Zegher F, Wittevrongel C, Thys C, Hoylaerts MF, Vermylen J, Van Geet C. Functional polymorphisms in the paternally expressed XLalphas and its cofactor ALEX decrease their mutual interaction and enhance receptor-mediated cAMP formation. Hum Mol Genet 2003; 12: 1121-1130
  • 99 Yu S, Castle A, Chen M, Lee R, Takeda K, Weinstein LS. Increased insulin sensitivity in Gsalpha knockout mice. J Biol Chem 2001; 276: 19994-19998
  • 100 Yu S, Gavrilova O, Chen H, Lee R, Liu J, Pacak K, Parlow A, Quon M, Reitman M, Weinstein L. Paternal versus maternal transmission of a stimulatory G-protein alpha subunit knockout produces opposite effects on energy metabolism. J Clin Invest 2000; 105: 615-623
  • 101 Chen M, Haluzik M, Wolf NJ, Lorenzo J, Dietz KR, Reitman ML, Weinstein LS. Increased insulin sensitivity in paternal Gnas knockout mice is associated with increased lipid clearance. Endocrinology 2004; 145: 4094-4102
  • 102 Skinner J, Cattanach B, Peters J. The imprinted oedematous-small mutation on mouse chromosome 2 identifies new roles for gnas and gnasxl in development. Genomics 2002; 80: 373
  • 103 Williamson CM, Ball ST, Nottingham WT, Skinner JA, Plagge A, Turner MD, Powles N, Hough T, Papworth D, Fraser WD, Maconochie M, Peters J. A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas. Nat Genet 2004; 36: 894-899
  • 104 Kelly ML, Moir L, Jones L, Whitehill E, Anstee QM, Goldin RD, Hough A, Cheeseman M, Jansson JO, Peters J, Cox RD. A missense mutation in the non-neural G-protein alpha-subunit isoforms modulates susceptibility to obesity. Int J Obes (Lond) 2009; 33: 507-518
  • 105 Eaton SA, Williamson CM, Ball ST, Beechey CV, Moir L, Edwards J, Teboul L, Maconochie M, Peters J. New Mutations at the Imprinted Gnas Cluster Show Gene Dosage Effects of Gsalpha in Postnatal Growth and Implicate XLalphas in Bone and Fat Metabolism but Not in Suckling. Mol Cell Biol 2012; 32: 1017-1029
  • 106 Chen M, Gavrilova O, Liu J, Xie T, Deng C, Nguyen AT, Nackers LM, Lorenzo J, Shen L, Weinstein LS. Alternative Gnas gene products have opposite effects on glucose and lipid metabolism. Proc Natl Acad Sci USA 2005; 102: 7386-7391
  • 107 Germain-Lee EL, Schwindinger W, Crane JL, Zewdu R, Zweifel LS, Wand G, Huso DL, Saji M, Ringel MD, Levine MA. A Mouse Model of Albright Hereditary Osteodystrophy Generated by Targeted Disruption of Exon 1 of the Gnas Gene. Endocrinology 2005; 146: 4697-4709
  • 108 Genevieve D, Sanlaville D, Faivre L, Kottler ML, Jambou M, Gosset P, Boustani-Samara D, Pinto G, Ozilou C, Abeguile G, Munnich A, Romana S, Raoul O, Cormier-Daire V, Vekemans M. Paternal deletion of the GNAS imprinted locus (including Gnasxl) in two girls presenting with severe pre- and post-natal growth retardation and intractable feeding difficulties. Eur J Hum Genet 2005; 13: 1033-1039
  • 109 Aldred MA, Aftimos S, Hall C, Waters KS, Thakker RV, Trembath RC, Brueton L. Constitutional deletion of chromosome 20q in two patients affected with albright hereditary osteodystrophy. Am J Med Genet 2002; 113: 167-172
  • 110 Chudoba I, Franke Y, Senger G, Sauerbrei G, Demuth S, Beensen V, Neumann A, Hansmann I, Claussen U. Maternal UPD 20 in a hyperactive child with severe growth retardation. Eur J Hum Genet 1999; 7: 533-540
  • 111 Lebrun M, Richard N, Abeguile G, David A, Coeslier Dieux A, Journel H, Lacombe D, Pinto G, Odent S, Salles JP, Taieb A, Gandon-Laloum S, Kottler ML. Progressive osseous heteroplasia: a model for the imprinting effects of GNAS inactivating mutations in humans. J Clin Endocrinol Metab 2010; 95: 3028-3038
  • 112 Kaplan FS, Shore EM. Progressive osseous heteroplasia. J Bone Miner Res 2000; 15: 2084-2094
  • 113 Shore EM, Ahn J, Jan de Beur S, Li M, Xu M, Gardner RJ, Zasloff MA, Whyte MP, Levine MA, Kaplan FS. Paternally inherited inactivating mutations of the GNAS1 gene in progressive osseous heteroplasia. N Engl J Med 2002; 346: 99-106
  • 114 Faust RA, Shore EM, Stevens CE, Xu M, Shah S, Phillips CD, Kaplan FS. Progressive osseous heteroplasia in the face of a child. Am J Med Genet A 2003; 118: 71-75
  • 115 Chan I, Hamada T, Hardman C, McGrath JA, Child FJ. Progressive osseous heteroplasia resulting from a new mutation in the GNAS1 gene. Clin Exp Dermatol 2004; 29: 77-80
  • 116 Adegbite NS, Xu M, Kaplan FS, Shore EM, Pignolo RJ. Diagnostic and mutational spectrum of progressive osseous heteroplasia (POH) and other forms of GNAS-based heterotopic ossification. Am J Med Genet A 2008; 146A: 1788-1796
  • 117 Mantovani G, Bondioni S, Lania AG, Corbetta S, de Sanctis L, Cappa M, Di Battista E, Chanson P, Beck-Peccoz P, Spada A. Parental origin of Gsalpha mutations in the McCune-Albright syndrome and in isolated endocrine tumors. J Clin Endocrinol Metab 2004; 89: 3007-3009
  • 118 Cattanach BM, Peters J, Ball S, Rasberry C. Two imprinted gene mutations: three phenotypes. Hum Mol Genet 2000; 9: 2263-2273