Horm Metab Res 2012; 44(09): 670-675
DOI: 10.1055/s-0032-1314854
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Mc2 Receptor Knockdown Modulates Differentiation and Lipid Composition in Adipocytes

M. J. Betz*
1   Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Munich, Germany
,
N. Hatiboglu*
1   Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Munich, Germany
,
B. Mauracher
1   Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Munich, Germany
,
D. Hadaschik
2   MRL, IMS, University of Cambridge, Cambridge, UK
,
A. Sauter
1   Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Munich, Germany
,
H. Demmelmair
3   Dr. von Hauner Children’s Hospital, Klinikum der LMU, Munich, Germany
,
B. Koletzko
3   Dr. von Hauner Children’s Hospital, Klinikum der LMU, Munich, Germany
,
F. Beuschlein*
1   Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Munich, Germany
,
M. Slawik*
1   Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Munich, Germany
› Author Affiliations
Further Information

Publication History

received 13 December 2011

accepted 08 May 2012

Publication Date:
21 June 2012 (online)

Abstract

The melanocortin system is involved in central and peripheral regulation of energy homeostasis. In adipocytes, the melanocortin 2 receptor (MC2R) transmits ACTH-dependent signaling and its expression rises substantially during adipocyte differentiation. An in vitro system of retrovirally expressed shRNA directed against Mc2r mRNA in 3T3-L1 cells was established and effects of Mc2r knockdown (kd) in comparison to cells expressing non-targeting shRNA (control) were explored in differentiated adipocytes. Morphology, gene expression, lipolysis and fatty acid composition were analyzed. While gross morphology was unchanged extractable amount of lipids was reduced to 70–80% in kd cell lines (p<0.01). Moreover, expression changes of Pparγ2, aP2, and Pref1 indicated reduced differentiation in Mc2r kd cells. Intriguingly, not only ACTH, but also norepinephrine stimulated lipolysis were substantially reduced demonstrating functional significance of MC2R for general lipolysis pathway. Analysis of fatty acid composition in triglyceride and phospholipid fractions showed a lowered ratio of C16:1/C16:0 and C18:1/C18:0, but increased concentrations of arachidonic acid upon Mc2r knockdown. Reduction of mono-unsaturated fatty acids (MUFAs) was associated with lower expression of stearoyl-Coenzyme A desaturase 1 and 2 in kd cells (21±8% vs. 100±13%, p=0.01 and 32±3% vs. 100±15%, p=0.046). Conversely, high doses of ACTH resulted in gene expression changes, mirroring Mc2r knockdown (higher Pparγ2, Scd1, Hsl expression). MC2R plays an important role for regular lipolytic function and lipid composition in 3T3-L1 adipocytes. Of interest, desaturase expression was reduced and MUFA content accordingly altered in kd cells.

* 

* These authors contributed equally to this work.


 
  • References

  • 1 Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005; 365: 1333-1346
  • 2 Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 2007; 87: 507-520
  • 3 Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106: 171-176
  • 4 Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell 2001; 104: 531-543
  • 5 Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 2008; 134: 933-944
  • 6 Zechner R, Strauss JG, Haemmerle G, Lass A, Zimmermann R. Lipolysis: pathway under construction. Curr Opin Lipidol 2005; 16: 333-340
  • 7 Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T, Inoue N, Ishikawa M, Okada S, Ishigaki N, Iwasaki H, Iwasaki Y, Karasawa T, Kumadaki S, Matsui T, Sekiya M, Ohashi K, Hasty AH, Nakagawa Y, Takahashi A, Suzuki H, Yatoh S, Sone H, Toyoshima H, Osuga J, Yamada N. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med 2007; 13: 1193-1202
  • 8 Nogueiras R, Wiedmer P, Perez-Tilve D, Veyrat-Durebex C, Keogh JM, Sutton GM, Pfluger PT, Castaneda TR, Neschen S, Hofmann SM, Howles PN, Morgan DA, Benoit SC, Szanto I, Schrott B, Schurmann A, Joost HG, Hammond C, Hui DY, Woods SC, Rahmouni K, Butler AA, Farooqi IS, O’Rahilly S, Rohner-Jeanrenaud F, Tschop MH. The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest 2007; 117: 3475-3488
  • 9 Boston BA. The role of melanocortins in adipocyte function. Ann N Y Acad Sci 1999; 885: 75-84
  • 10 Kelly KL, Wong EH, Jarett L. Adrenocorticotropic stimulation and insulin inhibition of adipocyte phospholipid methylation. J Biol Chem 1985; 260: 3640-3644
  • 11 White JE, Engel FL. Lipolytic action of corticotropin on rat adipose tissue in vitro. J Clin Invest 1958; 37: 1556-1563
  • 12 Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 2006; 281: 40236-40241
  • 13 Smith SR, Gawronska-Kozak B, Janderova L, Nguyen T, Murrell A, Stephens JM, Mynatt RL. Agouti expression in human adipose tissue: functional consequences and increased expression in type 2 diabetes. Diabetes 2003; 52: 2914-2922
  • 14 Iwen KA, Senyaman O, Schwartz A, Drenckhan M, Meier B, Hadaschik D, Klein J. Melanocortin crosstalk with adipose functions: ACTH directly induces insulin resistance, promotes a pro-inflammatory adipokine profile and stimulates UCP-1 in adipocytes. J Endocrinol 2008; 196: 465-472
  • 15 Noon LA, Clark AJ, King PJ. A peroxisome proliferator-response element in the murine mc2-r promoter regulates its transcriptional activation during differentiation of 3T3-L1 adipocytes. J Biol Chem 2004; 279: 22803-22808
  • 16 Noon LA, Clark AJ, O'Shaughnessy PJ, King PJ. A CCAAT/enhancer-binding protein site at -87 is required for the activation of a novel murine melanocortin 2-receptor promoter at late stages during adipogenesis. Endocrinology 2006; 147: 6019-6026
  • 17 Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 1992; 97: 493-497
  • 18 Klingler M, Demmelmair H, Koletzko B, Glaser C. Fatty acid status determination by cheek cell sampling combined with methanol-based ultrasound extraction of glycerophospholipids. Lipids 2011; 46: 981-990
  • 19 Penhoat A, Jaillard C, Saez JM. Corticotropin positively regulates its own receptors and cAMP response in cultured bovine adrenal cells. Proc Natl Acad Sci USA 1989; 86: 4978-4981
  • 20 Zhang JW, Klemm DJ, Vinson C, Lane MD. Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis. The J Biol Chem 2004; 279: 4471-4478
  • 21 Hoch M, Eberle AN, Wagner U, Bussmann C, Peters T, Peterli R. Expression and localization of melanocortin-1 receptor in human adipose tissues of severely obese patients. Obesity 2007; 15: 40-49
  • 22 Kubo M, Shimizu C, Kijima H, Nagai S, Koike T. Alternate promoter and 5'-untranslated exon usage of the mouse adrenocorticotropin receptor gene in adipose tissue. Endocr J 2004; 51: 25-30
  • 23 Noon LA, Bakmanidis A, Clark AJ, O’Shaughnessy PJ, King PJ. Identification of a novel melanocortin 2 receptor splice variant in murine adipocytes: implications for post-transcriptional control of expression during adipogenesis. J Mol Endocrinol 2006; 37: 415-420
  • 24 Kiwaki K, Levine JA. Differential effects of adrenocorticotropic hormone on human and mouse adipose tissue. J Comp Physiol 2003; 173: 675-678
  • 25 Chhajlani V. Distribution of cDNA for melanocortin receptor subtypes in human tissues. Biochem Mol Biol Inter 1996; 38: 73-80
  • 26 Pietilainen KH, Rog T, Seppanen-Laakso T, Virtue S, Gopalacharyulu P, Tang J, Rodriguez-Cuenca S, Maciejewski A, Naukkarinen J, Ruskeepaa AL, Niemela PS, Yetukuri L, Tan CY, Velagapudi V, Castillo S, Nygren H, Hyotylainen T, Rissanen A, Kaprio J, Yki-Jarvinen H, Vattulainen I, Vidal-Puig A, Oresic M. Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans. PLoS Biology 9 e1000623