Horm Metab Res 2012; 44(08): 632-638
DOI: 10.1055/s-0032-1314834
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Allopregnanolone Alters the Luteinizing Hormone, Prolactin, and Progesterone Serum Levels Interfering with the Regression and Apoptosis in Rat Corpus Luteum

M. R. Laconi
1   Instituto de Investigaciones Biomédicas, IMBECU-CONICET, Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
,
C. Chavez
1   Instituto de Investigaciones Biomédicas, IMBECU-CONICET, Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
,
J. C. Cavicchia
2   Instituto de Histología y Embriología de Mendoza, (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
,
M. Fóscolo
2   Instituto de Histología y Embriología de Mendoza, (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
,
Z. Sosa
3   Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
,
R. F. Yunes
1   Instituto de Investigaciones Biomédicas, IMBECU-CONICET, Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
,
R. J. Cabrera
1   Instituto de Investigaciones Biomédicas, IMBECU-CONICET, Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
› Author Affiliations
Further Information

Publication History

received 07 December 2011

accepted 07 May 2012

Publication Date:
06 June 2012 (online)

Abstract

Steroids synthesized in the central nervous system are termed “neurosteroids”. They are synthesized and metabolized in several brain areas. The objective of this work was to determine if 1 intracerebroventricular allopregnanolone injection in rats can interfere in luteal regression in a close relationship with modifications in LH, progesterone, and prolactin serum concentrations. Allopregnanolone was injected during proestrus morning and the animals were sacrificed on oestrous morning. Ovulation test and histological analysis were performed in the oestrus morning with light and electron microscopy. Serum prolactin, LH, and progesterone levels were measured by radioimmunoassay. The allopregnanolone injection significantly decreased luteinizing hormone serum level and the number of oocytes on oestrus. Progesterone and prolactin serum levels were increased after this injection. The inhibition of apoptotic figures due to allopregnanolone administration was detected in the already formed corpora lutea belonging to the previous ovary cycle and it was significantly lower than in vehicle group (control). When the GABAA antagonist (bicuculline) was administered alone or previously to allopregnanolone, no effect on the ovulation rate was observed. No changes in the apoptotic cell numbers were observed with respect to those of vehicle group. These results show that the effect of centrally injected allopreganolone over reproductive function could be due to a centrally originated LH mediated effect over ovarian function that affects luteal regression, through the inhibition of apoptosis and stimulation of progesterone and prolactin release.

 
  • References

  • 1 McEwen BS. Non-genomic and genomic effects of steroids on neural activity. Trends Pharmacol Sci 1991; 12: 141-147
  • 2 Melcangi RC, Panzica G, Garcia-Segura LM. Neuroactive steroids: focus on human brain. Neuroscience 2011; 191: 1-5
  • 3 Micevych P, Sinchak K. Synthesis and function of hypothalamic neuroprogesterone in reproduction. Endocrinology 2008; 149: 2739-2742
  • 4 Laconi MR, Casteller G, Gargiulo P, Bregonzio C, Cabrera RJ. The anxiolytic effect of Allopregnanolone is associated with gonadal hormonal status in female rats. Eur J Pharmacol 2001; 417: 111-116
  • 5 Robel P, Baulieu EE. Neurosteroids: Biosynthesis and function. Trends Endocrinol Metab 1994; 5: 1-8
  • 6 Majewska MD. Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol 1992; 38: 379-395
  • 7 Paul SM, Purdy RH. Neuroactive steroids. FASEB J 1992; 6: 2311-2322
  • 8 Guidotti A, Costa E. Can the antidysphoric and anxiolytic profiles of selective serotonin reuptake inhibitors be related to their ability to increase brain 3 alpha, 5 alpha-tetrahydroprogesterone (Allopregnanolone) availability?. Biol Psychiatry 1998; 44: 865-873
  • 9 Smith SS, Gong QH, Moran MH, Bitran D, Frye CA, Hsu FC. Withdrawal from 3alpha-OH-5alpha-Pregnan-20-One using a pseudopregnancy model alters the kinetics of hippocampal GABAA-gated current and increases the GABAA receptor alpha4 subunit in association with increased anxiety. J Neurosci 1998; 18: 5275-5284
  • 10 Smith SS, Gong QH, Hsu FC, Markowitz RS, French-Muller JM, Li X. GABA(A) receptor alpha4 subunit suppression prevents withdrawal properties of an endogenous steroid. Nature 1998; 392: 926-930
  • 11 Monnet FP, Maurice T. The sigma1 protein as a target for the non-genomic effects of neuroactive steroids: molecular, physiological, and behavioral aspects. J Pharmacol Sci 2006; 100: 93-118
  • 12 Schumacher M, Coirini H, Robert F, Guennoun R, El-Eltr M. Genomic and membrane actions of progesterone: implications for reproductive physiology and behavior. Behav Brain Res 1999; 105: 37-52
  • 13 Lambert JJ, Belelli D, Hill-Venning C, Peters J. Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 1995; 16: 295-303
  • 14 Micevych P, Sinchak K, Mills RH, Tao L, LaPolt P, Lu JK. The luteinizing hormone surge is preceded by an estrogen-induced increase of hypothalamic progesterone in ovariectomized and adrenalectomized rats. Neuroendocrinology 2003; 78: 29-35
  • 15 Laconi MR, Cabrera RJ. Effect of centrally injected Allopregnanolone on sexual receptivity, luteinizing hormone release, hypothalamic dopamine turnover, and release in female rats. Endocrine 2002; 17: 77-83
  • 16 Cruz ME, Villegas G, Domínguez-González A, Chavira R, Domínguez R. Ovulation delay induced by blockade of the cholinergic system on dioestrus-1, is related to changes in dopaminergic activity of the preoptic anterior-hypothalamic area of the rat. Brain Res Bull 2001; 54: 339-344
  • 17 Giuliani FA, Yunes R, Mohn CE, Laconi M, Rettori V, Cabrera R. Allopregnanolone induces LHRH and glutamate release through NMDA receptor modulation. Endocrine 2011; 40: 21-26
  • 18 Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev 2007; 28: 117-149
  • 19 Goyeneche AA, Deis RP, Gibori G, Telleria CM. Progesterone promotes survival of the rat corpus luteum in the absence of cognate receptors. Biol Reprod 2003; 68: 151-158
  • 20 McGuire WJ, Juengel JL, Niswender GD. Protein kinase C second messenger system mediates the antisteroidogenic effects of prostaglandin F2 alpha in the ovine corpus luteum in vivo. Biol Reprod 1994; 51: 800-806
  • 21 Pate JL. Cellular components involved in luteolysis. J Anim Sci 1994; 72: 1884-1890
  • 22 Barbaccia ML, Roscetti G, Bolacchi F, Concas A, Mostallino MC, Purdy RH, Biggio G. Stress-induced increase in brain neuroactive steroids: antagonism by abecarnil. Pharmacol Biochem Behav 1996; 54: 205-210
  • 23 Paxinos G, Watson C. The rat brain in stereotaxic coordinates. London: Academic Press; 2009
  • 24 Morales L, Chávez R, Ayala ME, Domínguez R. Effects of unilateral or bilateral superior ovarian nerve section in prepubertal rats on the ovulatory response to gonadotrophin administration. J Endocrinol 1998; 158: 213-219
  • 25 Van de Schepop HA, de Jong JS, van Diest PJM, Baak JP. Counting of apoptotic cells: a methodological study in invasive breast cancer. Clin Mol Pathol 1996; 49: 214-217
  • 26 Telleria CM, Goyeneche A, Cavicchia JC, Statu AO, Deis RP. Apoptosis induced by antigestagen RU486 in rat corpus luteum of pregnancy. Endocrine 2001; 15: 147-155
  • 27 Plas-Roser S, Muller B, Aron C. Estradiol involvement in the luteolytic action of LH during estrous cycle in the rat. Exp Clin Endocrinol 1988; 92: 145-153
  • 28 Stocco CO, Chedrese J, Deis RP. Luteal expression of cytochome P450 side-chain cleavage, steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase, and 20α-hydroxysteroid dehydrogenase genes in late pregnant rats: effect of luteinizing hormone and RU486. Biol Reprod 2001; 65: 1114-1119
  • 29 Micevych P, Bondar G, Kuo J. Estrogen actions on neuroendocrine glia. Neuroendocrinology 2010; 91: 211-222
  • 30 Wang Z, Tamura K, Yoshie M, Tamura H, Imakawa K, Kogo H. Prostaglandin F2alpha-induced functional regression of the corpus luteum and apoptosis in rodents. J Pharmacol Sci 2003; 92: 19-27
  • 31 Peluffo MC, Young KA, Stouffer RL. Dynamic expression of caspase -2, -3, -8, and -9 proteins and enzyme activity, but not messenger ribonucleic acid, in the monkey corpus luteum during the menstrual cycle. J Clin Endocrinol Metab 2005; 90: 2327-2335
  • 32 Peluffo MC, Bussman L, Stouffer RL, Tesone M. Expression of caspase -2, -3, -8 and -9 proteins and enzyme activity in the corpus luteum of the rat at different stages during the natural estrous cycle. Reproduction 2006; 132: 465-475
  • 33 Telleria CM. Can luteal regression be reversed?. Reprod Biol Endocrinol 2006; 4: 53
  • 34 Goyeneche AA, Calvo V, Gibori G, Telleria CM. Androstenedione interferes in luteal regression by inhibiting apoptosis and stimulating progesterone production. Biol Reprod 2002; 66: 1540-1547
  • 35 Feng Z, Marti A, Jehn B, Altermatt HJ, Chicaiza G, Jaggi R. Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J Cell Biol 1995; 131: 1095-1103
  • 36 Tellería CM, Carrizo DG, Deis RP. Levonorgestrel inhibits luteinizing hormone-stimulated progesterone production in rat luteal cells. J Steroid Biochem Mol Biol 1994; 50: 161-166
  • 37 Chu Z, Moenter SM. Endogenous activation of metabotropic glutamate receptors modulates GABAergic transmission to gonadotropin-releasing hormone neurons and alters their firing rate: a possible local feedback circuit. J Neurosci 2005; 25: 5740-5749
  • 38 Calogero AE, Palumbo MA, Bosboom N, Burrello N, Ferrara E, Palumbo G, Petraglia F, D’Agata R. The neuroactive steroid Allopregnanolone suppresses hypothalamic gonadotropin-releasing hormone release through a mechanism mediated by the gamma-aminobutyric acid A receptor. J Endocrinol 1998; 158: 121-125
  • 39 Lin YS, Li XF, Shao B, Hu MH, Goundry AL, Jeyaram A, Lightman SL, O’Byrne KT. The role of GABAergic signaling in stress-induced suppression of gonadotrophin-releasing hormone pulse generator frequency in female rats. J Neuroendocrinol 2012; 24: 477-488
  • 40 Genazzani AR, Palumbo MA, deMicheroux AA, Artini PG, Criscuolo M, Ficarra G, Guo AL, Benelli A, Bertolini A, Petraglia F, Purdy RH. Evidence for a role for the neurosteroid Allopregnanolone in the modulation of reproductive function in female rats. Eur J Endocrinol 1995; 133: 375-380
  • 41 Smith M, Jennes L. Neural signals that regulate GnRH neurons directly during the oestrous cycle. Reproduction 2001; 122: 1-10
  • 42 Timby E, Hedström H, Bäckström T, Sundström-Poromaa I, Nyberg S, Bixo M. Allopregnanolone, a GABAA receptor agonist, decreases gonadotropin levels in women. A preliminary study. Gynecol Endocrinol 2011; 27: 1087-1093
  • 43 Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: Structure, Function, and Regulation of Secretion. Physiological Reviews 2000; 80: 1523-1631
  • 44 Michael AE, Abayasekara DR, Webley GE. Cellular mechanisms of luteolysis. Mol Cell Endocrinol 1994; 99: 1-9
  • 45 Kennett JE, McKee DT. Oxytocin: An emerging regulator of prolactin secretion in the female rat. J Neuroendocrinol 2011; 10: 1365-2826