Deutsche Zeitschrift für Onkologie 2012; 44(3): 109-118
DOI: 10.1055/s-0032-1314699
Forschung
© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Krebszellen mögen Zucker, aber noch mehr lieben sie Fett und tierisches Eiweiß

Ludwig Manfred Jacob
1   Dr. Jacob’s Institut, Heidesheim a. Rh.
,
Nicole Weis
2   Redaktion Deutsche Zeitschrift für Onkologie, Leonberg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
25. September 2012 (online)

Zusammenfassung

Zweifelsohne hat unsere Ernährung Einfluss auf das Krebsgeschehen. Allerdings gehen die Meinungen über die richtige Antikrebsdiät oft weit auseinander. In den letzten Jahren wurde eine proteinreiche Abwandlung der ursprünglichen ketogenen Diät als angeblich wirksame und wissenschaftlich belegte Krebsdiät propagiert. Bei genauer Sicht der epidemiologischen und ernährungswissenschaftlichen Studienlage scheint jedoch höchste Vorsicht geboten. Die These, eine „ketogene Diät“ könne den Tumor „aushungern“ und das Überleben verlängern, ist wissenschaftlich nicht belegt. Im Labor werden Krebszellen bekanntlich nicht in Zuckerwasser, sondern in Kälber- oder Rinderserum gezüchtet. Der hohe Anteil an tierischem Eiweiß in der neuen ketogenen Diät dient Krebszellen als Brenn- und Baustoff, belastet den Stoffwechsel und wirkt insulinogen. Das viele Fett nährt Adipozyten wie Krebszellen gleichermaßen und kann auf Dauer eine Insulinresistenz fördern. Krebszellen versorgen sich durch die Überexpression von Glukosetransportern noch mit Glukose, wenn der Mensch schon lange an Hypoglykämie verstorben ist. Die starke Kohlenhydratrestriktion senkt also nur die Lebensqualität und erhöht das Risiko psychischer und metabolischer Störungen, wie sie für extreme Low-Carb-Diäten bekannt sind. Neue Erkenntnisse zeigen, dass Krebszellen einen gesteigerten Fettstoffwechsel und eine erhöhte β-Oxidation aufweisen und Fettsäuren zur mitochondrialen Entkopplung und dem Warburg-Effekt beitragen. Die als Antikrebsdiät propagierte Ernährungsweise steht im Widerspruch zu ernährungswissenschaftlichen und medizinischen Goldstandards.

Summary

Without doubt, our diet affects the initition and progression of cancer. However, opinions about the proper anti-cancer diet often go far apart. In recent years, a high-protein modification of the original ketogenic diet has been propagated as an allegedly effective and science based cancer diet. Looking at the vast majority of epidemiological and nutritional studies, this approach has to be viewed with utmost caution. The theory that a „ketogenic diet“ could „starve“ the cancer and increase survival has not been scientifically proven. It is generally known that cancer cell cultures do not grow in sugar water, but in bovine serum. The high amount of animal protein in this alleged anti cancer diet serves cancer cells as fuel and building materials, burdens the metabolism and is insulinogenic. The high fat content feeds both adipocytes and cancer cells alike and is likely to promote insulin resistance in the long run. Due to the overexpression of glucose transporters, cancer cells can still obtain glucose from the blood when the human organism has died from hypoglycemia long before. The drastic carbohydrate restriction only reduces the quality of life and increases the risk of psychological and metabolic disorders, such as they are known for extreme low carb diets. New findings show that cancer cells have an increased fat metabolism and an increased beta-oxidation and fatty acids contribute to mitochondrial uncoupling and the Warburg effect. The so called anti cancer diet is at odds with nutritional and medical gold standards.

 
  • Literatur

  • 1 Arends J. Maligne Tumoren – Transketolase–like 1 (TKTL 1) – Ketogene Diät. Aktuel Ernaehr Med 2008; 33: 80-1
  • 2 Aune D et al. Carbohydrates, glycemic index, glycemic load, and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Cancer Causes Control 2012; Apr. 23(4): 521-35 Epub 2012 Mar 15
  • 3 Bao J, Atkinson F, Petocz P et al. Prediction of postprandial glycemia and insulinemia in lean, young, healthy adults: glycemic load compared with carbohydrate content alone. Am J Clin Nutr 2011; 93: 984-96
  • 4 Baron A, Migita T, Tang D, Loda M. Fatty acid synthase: a metabolic oncogene in prostate cancer?. J Cell Biochem 2004; 91(1): 47-53
  • 5 Chajès V, Thiébaut AC, Rotival M et al. Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC Study. Am J Epidemiol 2008; 167(11): 1312-20
  • 6 Danner BC, Didilis VN, Wiemeyer S et al. Long-term survival is linked to serum LDH and partly to tumour LDH-5 in NSCLC. Anticancer Res 2010; 30(4): 1347-51
  • 7 Ebbesson SO, Risica PM, Ebbesson LO, Kennish JM. Eskimos have CHD despite high consumption of omega-3 fatty acids: the Alaska Siberia Project. Int J Circumpolar Health 2005; 64(4): 387-95
  • 8 Echtay KS, Esteves TC, Pakay JL et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO 2003; 22: 4103-10
  • 9 Echtay KS, Murphy MP, Smith RA et al. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J Biol Chem 2002; 277: 47129-35
  • 10 Elmadfa I, Leitzmann C. Ernährung des Menschen. 4. Aufl. Stuttgart: Ulmer; 2004
  • 11 Frattaroli J et al. Clinical events in prostate cancer lifestyle trial: results from two years of follow-up. Urology 2008; 72(6): 1319-23
  • 12 Gansler TS, Hardman W, Hunt DA et al. Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Hum Pathol 1997; 28(6): 686-92
  • 13 Gonzalez CA, Riboli E. Diet and cancer prevention: Contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Cancer 2010; 46(14): 2555-62
  • 14 Harper ME, Antoniou A, Villalobos-Menuey E et al. Characterization of a novel metabolic strategy used by drug-resistant tumor cells. FASEB J 2002; 16 (12): 1550-7
  • 15 Hunt DA, Lane HM, Zygmont ME et al. MRNA stability and overexpression of fatty acid synthase in human breast cancer cell lines. Anticancer Res 2007; 27(1A): 27-34
  • 16 Ikeda T, Yoshida T, Ito Y et al. Effect of beta-hydroxybutyrate and acetoacetate on insulin and glucagon secretion from perfused rat pancreas. Arch Biochem Biophys 1987; 257: 140-3
  • 17 Jain SK, Kannan K, Lim G. Ketosis (acetoacetate) can generate oxygen radicals and cause increased lipid peroxidation and growth inhibition in human endothelial cells. Free Radic Biol Med 1998; 25: 1083-8
  • 18 Jain SK, McVie R, Jaramillo JJ, Chen Y. Hyperketonemia (acetoacetate) increases the oxidizability of LDL+VLDL in Type-1 diabetic patients. Free Radic Biol Med 1998; 24: 175-81
  • 19 Jain SK, McVie R. Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in Type 1 diabetic patients. Diabetes 1999; 48: 1850-5
  • 20 Janney NW. The metabolic relationship of the proteins to glucose. J Biol Chem 1915; 20: 321-50
  • 21 Kämmerer U, Schlatterer C, Knoll G. Krebszellen lieben Zucker – Patienten brauchen Fett. Lünen: Systemed; 2011. Seite 228-35
  • 22 Khasawneh J, Schulz MD, Walch A et al. Inflammation and mitochondrial fatty acid β-oxidation link obesity to early tumor promotion. Proc Natl Acad Sci USA 2009; 106(9): 3354-9
  • 23 Koukourakis MI, Giatromanolaki A, Winter S et al. Lactate dehydrogenase 5 expression in squamous cell head and neck cancer relates to prognosis following radical or postoperative radiotherapy. Oncology 2009; 77(5): 285-92
  • 24 Leitzmann C, Weiger M, Kurz M. Ernährung bei Krebs. München: Gräfe & Unzer; 1996
  • 25 Liu Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis 2006; 9(3): 230-4
  • 26 Malaisse WJ, Lebrun P, Rasschaert J et al. Ketone bodies and islet function: 86Rb handling and metabolic data. Am J Physiol 1990; 259: 123-30
  • 27 Malaisse WJ, Lebrun P, Yaylali B et al. Ketone bodies and islet function: 45Ca handling, insulin synthesis, and release. Am J Physiol 1990; 259: 117-22
  • 28 Mellanen P, Minn H, Grénman R, Härkönen P. Expression of glucose transporters in head-and-neck tumors. Int J Cancer 1994; 56: 622-9
  • 29 Moore AE, Sabachewsky L, Toolan HW. Culture characteristics of four permanent lines of human cancer cells. Cancer Res 1955; 15(9): 598-602
  • 30 Noguchi Y, Marat D, Saito A et al. Expression of facilitative glucose transporters in gastric tumors. Hepatogastroenterology 1999; 46: 2683-9
  • 31 Ornish D, Magbanua MJ, Weidner G et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci USA 2008; 105(24): 8369-74
  • 32 Palit V, Phillips RM, Puri R et al. Expression of HIF-1-alpha and GLUT-1 in human bladder cancer. Oncol Rep 2005; 14: 909-13
  • 33 Pan A, Sun Q, Bernstein AM et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr 2011; 94(4): 1088-96 Epub 2011 Aug 10
  • 34 Patel AA, Gawlinski ET, Lemieux SK, Gatenby RA. A cellular automaton model of early tumor growth and invasion. J Theor Biol 2001; 213 (3): 315-31
  • 35 Pecqueur C, Bui T, Gelly C et al. Uncoupling protein-2 controls proliferation by promoting fatty acid oxidation and limiting glycolysis-derived pyruvate utilization. FASEB J 2008; 22: 9-18
  • 36 Rotondo D, Davidson J. Genetics and molecular biology: fatty acid metabolism in cancer cell survival; carnitine palmitoyltransferase-1 as a critical anticancer target. Curr Opin Lipidol 2011; 22(5): 428-9
  • 37 Rudlowski C, Becker AJ, Schroder W et al. GLUT-1 messenger RNA and protein induction relates to the malignant transformation of cervical cancer. Am J Clin Pathol 2003; 120: 691-8
  • 38 Samudio I, Harmancey R, Fiegl M et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 2010; 120(1): 142-56
  • 39 Santel T, Pflug G, Hemdan NY et al. Curcumin inhibits glyoxalase 1: a possible link to its anti-inflammatory and antitumor activity. PLoS ONE 2008; 3: 3508
  • 40 Saxe GA, Major JM, Nguyen JY et al. Potential attenuation of disease progression in recurrent prostate cancer with plant-based diet and stress reduction. Integr Cancer Ther 2006; 5(3): 206-13
  • 41 Schmidt M, Pfetzer N, Schwab M et al. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial. Nutrition & Metabolism 2011; 8: 54
  • 42 Schulz M, Hoffmann K, Weikert C et al. Identification of a dietary pattern characterized by high-fat food choices associated with increased risk of breast cancer: the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Br J Nutr 2008; 100(5): 942-6
  • 43 Sieri S, Krogh V, Muti P et al. Fat and protein intake and subsequent breast cancer risk in postmenopausal women. Nutr Cancer 2002; 42(1): 10-7
  • 44 Sluijs I, Beulens JW, van der A DL et al. Dietary intake of total, animal, and vegetable protein and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-NL study. Diabetes Care 2010; 33 (1): 43-48
  • 45 Takeuchi M, Kimura S, Kuroda J et al. Glyoxalase-I is a novel target against Bcr-Abl+ leukemic cells acquiring stem-like characteristics in a hypoxic environment. Cell Death Differ 2010; 17 (7): 1211-20
  • 46 Turner N, Bruce CR, Beale SM et al. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 2007; 56: 2085-92
  • 47 Turner-McGrievy GM, Barnard ND, Scialli AR. A two-year randomized weight loss trial comparing a vegan diet to a more moderate low-fat diet. 2007 ; 15(9): 2276–81. Obesity 2007; (Silver Spring) 15(9): 2276-81
  • 48 Walenta S, Wetterling M, Lehrke M et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 2000; 60: 916-21
  • 49 Walenta S, Mueller-Klieser WF. Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 2004; 14 (3): 267-74
  • 50 Welshons WV, Grady LH, Engler KS, Judy BM. Control of proliferation of MCF-7 breast cancer cells in a commercial preparation of charcoal-stripped adult bovine serum. Breast Cancer Res Treat 1992; 23: 97-104 DOI: 10.1007/BF01831481.
  • 51 Williams CD, Stengel J, Asike MI et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 2011; 140(1): 124-31