Ultraschall Med 2013; 34(2): 131-136
DOI: 10.1055/s-0032-1313168
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Differentiating Between Malignant and Benign Breast Masses: Factors Limiting Sonoelastographic Strain Ratio

Wertigkeit der semiquantitativen Sonoelastografie (Strain Ratio) in der Differenzierung maligner von benignen Brusttumoren
A. Stachs
1   Department of Obstretrics and Gynecology, University of Rostock Medical School
,
S. Hartmann
1   Department of Obstretrics and Gynecology, University of Rostock Medical School
,
J. Stubert
1   Department of Obstretrics and Gynecology, University of Rostock Medical School
,
M. Dieterich
1   Department of Obstretrics and Gynecology, University of Rostock Medical School
,
A. Martin
1   Department of Obstretrics and Gynecology, University of Rostock Medical School
,
G. Kundt
2   Department of Biostatistics, University of Rostock
,
T. Reimer
1   Department of Obstretrics and Gynecology, University of Rostock Medical School
,
B. Gerber
1   Department of Obstretrics and Gynecology, University of Rostock Medical School
› Author Affiliations
Further Information

Publication History

25 May 2012

25 July 2012

Publication Date:
29 October 2012 (online)

Abstract

Purpose: We compared strain ratio vs. qualitative elastography for the further differentiation of focal breast lesions, with special focus on limiting factors.

Materials and Methods: 215 patients with 224 histologically proven breast masses (116 malignant, 108 benign) were prospectively examined using a high-end ultrasound system (Philips iU22) with serial elastography function. B-mode scans and available mammograms were reviewed according to the BIRADS classification, raw elastogram data was analyzed qualitatively using the Tsukuba score and semiquantitatively by calculating the strain ratio (fat to lesion ratio). For diagnostic performance, Receiver Operating Characteristic (ROC) curve analysis was obtained. A sub-group analysis regarding breast density, lesion size, lesion depth and histological subtypes was performed.

Results: Mean strain ratio values were 3.04 ± 0.9 for malignant and 1.91 ± 0.75 for benign lesions (p < 0,001). The areas under the ROC curve values were 0.832 (95 % CI 0.777; 0.888) for strain ratio, 0.869 (95 % CI 0.822; 0.917) for Tsukuba score, 0.822 (95 % CI 0.768; 0.876) for B-mode ultrasound and 0.853 (95 % CI 0.799; 0.907) for mammography. Sensitivity, specificity, positive predictive value and negative predictive value of the strain ratio were 90.7 %, 58.2 %, 70.3 % and 85.1 %, when a cutoff point of 2.0 was used. Only lesion depth ≤ 4 mm was associated with diagnostic failure in the multivariate analysis of factors influencing accuracy, whereas no significant correlation between breast density and lesion size and the accuracy of the strain ratio could be found.

Conclusion: The addition of strain ratio to B-mode ultrasound increases specificity without loss of sensitivity in differentiating between malignant and benign breast tumors. Strain ratio measurements should not be carried out on tumors with a lesion depth ≤ 4 mm.

Zusammenfassung

Ziel: Ermittlung des Stellenwerts der semiquantitativen Strain Ratio (SR) in der Dignitätsbeurteilung von Mammatumoren unter Berücksichtigung limitierender Faktoren

Material und Methoden: 215 Patientinnen mit 224 Brusttumoren wurden vor Stanzbiopsie mit einem Stufe-3-Ultraschallgerät mit serieller Elastografieausstattung untersucht. Die Einschätzung des Elastizitätsscores (ES) und Ermittlung der SR erfolgten patientenunabhängig anhand gespeicherter Rohdatensätze. Die diagnostische Aussagekraft wurde durch Receiver-Operating-Characteristics(ROC)-Analyse ermittelt, eine Subgruppenanalyse hinsichtlich Brustdichte, Tumorgröße und Hautabstand erfolgte.

Ergebnisse: Die 116 malignen Tumoren wiesen eine signifikant größere mittlere SR auf als die 108 benignen Tumoren (3,04 ± 0,9 vs. 1,91 ± 0,75; p < 0,001). Die ROC-Analyse ergab für die SR einen AUC(area under the curve)-Wert von 0,832 (95 % CI 0,777; 0,888), für den ES 0,869 (95 % CI 0,822; 0,917) und für die B-Mode-Sonografie 0,822 (95 % CI 0,768; 0,876). Unter Nutzung eines Cut-off-Wertes von 2,0 weist die SR eine Sensitivität von 90,7 % und eine Spezifität von 58,2 % auf (ES 87,9 % und 73,1 %, B-Mode-Sonografie 97,4 % und 42,6 %). Die Multivarianzanalyse zum Einfluss von Brustdichte, Tumorgröße und Hautabstand zeigt eine negative Korrelation zwischen Hautabstand und Genauigkeit der SR.

Schlussfolgerung: Beide Elastografieverfahren zeigen im Vergleich zur B-Mode-Sonografie eine höhere Spezifität bei etwas geringerer Sensitivität. Bei oberflächlich gelegenen Tumoren ist die SR limitiert verwertbar.

 
  • References

  • 1 Sarvazyan A, Hall TJ, Urban MW et al. An overview of elastography – an emerging branch of medical imaging. Curr Med Imaging Rev 2011; 7: 255-282
  • 2 Wells PN, Liang HD. Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 2011; 8: 1521-1549
  • 3 Balleyguier C, Canale S, Ben Hassen W et al. Breast elasticity: Prinziples, technique, results: an update and overview of commercially available software. Eur J Radiol 2012; Mar 24 [epub ahead of print]
  • 4 Cho N, Moon WK, Park JS. Real-time US elastography in the differentiation of suspicious microcalcifications on mammography. Eur Radiol 2009; 19: 1621-1628
  • 5 Isermann R, Grunwald S, Hatzung G et al. Breast lesion sizing by B-mode imaging and sonoelastography in comparison to histopathological sizing – a prospective study. Ultraschall in Med 2011; 32: 21-26
  • 6 Thomas A, Degenhardt F, Farrokh A. Significant differentiation of focal breast lesions. Calculation of strain ratio in breast sonoelastography. Acad Radiol 2010; 17: 558-563
  • 7 Cho N, Moon WK, Kim HY et al. Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. J Ultrasound Med 2010; 29: 1-7
  • 8 Wojcinski S, Farrokh A, Weber S et al. Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BIRADS-US classification system with sonoelastography. Ultraschall in Med 2010; 31: 484-491
  • 9 Lee JH, Kim SH, Kang BJ et al. Role and clinical usefulness of elastography in small breast masses. Acad Radiol 2011; 18: 74-80
  • 10 Sadigh G, Carlos RC, Neal CH et al. Ultrasonic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat 2011; Nov 5 (Epub ahead of print)
  • 11 Schaefer FK, Heer I, Schaefer PJ et al. Breast ultrasound elastography – results of 193 breast lesions in a prospective study with histopathologic correlation. Eur J Radiol 2011; 77: 450-456
  • 12 Itoh A, Ueno E, Tohno E et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 2006; 239: 341-350
  • 13 Yoon JH, Kim MH, Kim EK et al. Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions. Am J Radiol 2011; 196: 730-736
  • 14 Zhi H, Xiao XY, Yang HY et al. Semi-quantitating stiffness of breast solid lesions in ultrasonic elastography. Acad Radiol 2008; 15: 1347-1353
  • 15 Geaid M, Grunwald S, Hatzung G et al. Fat-lesion-ratio vs. elastography score: a new method for sonoelastography in the diagnostics of breast lesions. Ultraschall in Med 2008; 29: OP_2_15
  • 16 Farrokh A, Wojcinski S, Degenhardt F. Diagnostic value of strain ratio measurements in the differentiation of malignant and benign breast lesions. Ultraschall in Med 2011; 32: 400-405
  • 17 Zhi H, Xiao XY, Yang HY et al. Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Acad Radiol 2010; 17: 1227-1233
  • 18 Fischer T, Peisker U, Fiedor S et al. Significant differentiation of focal breast lesions: raw data-based calculation of strain ratio. Ultraschall in Med 2011; May 25. [Epub ahead of print]
  • 19 Burnside ES, Hall TJ, Sommer AM et al. Differentiating benign from malignant solid breast masses with US strain imaging. Radiology 2007; 245: 401-410
  • 20 Zhu QL, Jiang YX, Liu JB et al. Real-time ultrasound elastography: its potential role in assessment of breast lesions. Ultrasound Med Biol 2008; 34: 1232-1238
  • 21 Wojcinski S, Farrokh A, Gyapong S et al. Sonoelastographie: Welche Verfahren gibt es? Wie sind Handhabung und Reproduzierbarkeit im klinischen Alltag? [Sonoelastography: What procedures exist? How is it used in clinical practice and how reproducible is it?]. Düsseldorf: In: Deutsche Gesellschaft für Senologie, 29. Jahrestagung; 2009
  • 22 Hatzung G, Grunwald S, Zygmunt M et al. Sonoelastography in the diagnosis of malignant and benign breast lesions: initial clinical experiences. Ultraschall in Med 2010; 31: 596-603
  • 23 Evans A, Whelehan P, Thomson K. Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Research 2010; 12: R104
  • 24 Chang JM, Moon WK, Cho N et al. Breast mass evaluation: factors influencing the quality of US elastography. Radiology 2011; 259: 59-64
  • 25 Mori M, Tsunoda H, Kawauchi N et al. Elastographic evaluation of mucinous carcinoma of the breast. Breast Cancer 2012; 19: 60-63
  • 26 Berg WA, Cosgrove DO, Dore CJ et al. Shear-wave elastography improves the specificity of breast US: the BE1 Multinational study of 939 masses. Radiology 2012; 262: 435-449
  • 27 Cosgrove DO, Berg WA, Dore CJ et al. Shear wave elastography for breast masses is highly reproducible. Eur Radiol 2012; 22: 1023-1032