Der Nuklearmediziner 2012; 35(01): 43-52
DOI: 10.1055/s-0031-1301353
Schilddrüsendiagnostik – Algorithmen und Leitlinien
© Georg Thieme Verlag KG Stuttgart · New York

Radioiodtherapie beim differenzierten Schilddrüsenkarzinom

Radioiodine Therapy in Differentiated Thyroid Carcinoma
A. Bockisch
1   Klinik für Nuklearmedizin, Universitätsklinikum Essen
,
R. Görges
1   Klinik für Nuklearmedizin, Universitätsklinikum Essen
,
L. S. Freudenberg
1   Klinik für Nuklearmedizin, Universitätsklinikum Essen
,
S. J. Rosenbaum-Krumme
1   Klinik für Nuklearmedizin, Universitätsklinikum Essen
› Author Affiliations
Further Information

Publication History

Publication Date:
15 March 2012 (online)

Zusammenfassung

Die Radioiodtherapie des differenzierten Schilddrüsenkarzinoms hat eine 70-jährige Tradition. Sie wird sehr gut toleriert, ist nebenwirkungsarm und trägt einen substanziellen Anteil zur guten Prognose der Erkrankung bei. An den Grundprinzipien der Therapie hat sich nichts geändert. Voraussetzung für den Erfolg ist die gute Aufnahme des Iods in die Schilddrüsenkarzinomzelle und die möglichst lange Retention. In den letzten Jahren sind verschiedene Innovationen zu verzeichnen. Die für die Iodaufnahme für erforderlich gehaltene TSH-Stimulation ist seit einigen Jahren auch mittels rhTSH-Injektionen möglich, wodurch die durch den Schilddrüsenhormonentzug bedingten hypothyreoten Beschwerden vermieden werden können. Eine zuverlässige und vorhersagbar positive (im Sinne einer höheren Läsionsstrahlendosis) Beeinflussung der Iodkinetik ist derzeit jedoch weiterhin nicht bekannt. Die Gabe von Li+ könnte ebenso hilfreich sein wie andere Modalitäten zur Beeinflussung der Iodkinetik, die von der Behandlung gutartiger Schilddrüsenerkrankungen her bekannt sind. Die Identifizierung von Patienten, bei denen eine kurative Radioiodtherapie nicht zu erwarten ist, wird durch die Dosimetrie mit 124I – PET/CT möglich und darüber hinaus mittels der prätherapeutischen Dosimetrie auch die individuelle Festsetzung der 131I-Therapieaktivität. Durch die Einführung der SPECT/CT steht eine Gammakamera-basierte Schnittbilddiagnostik mit anatomischer Korrelation auch mit dem Therapienuklid 131I zur Verfügung, wodurch die Aussagekraft der Post-Therapie-Szintigrafie gesteigert wird.

Abstract

There is 70 years history of radioiodine therapy of differentiated thyroid carcinoma (DTC). The therapy is well tolerated and side effects are rare. It significantly contributes to the good prognosis of DTC. Within the last 70 years the fundamental aspects of the therapy remained unchanged. Prequisite for the successful therapy are high iodine uptake into the thyroid cancer cell and a long retention. Only during the last few years, some innovations became available. The high TSH level, which is believed to be necessary for high iodine uptake, may now be reached by rhTSH-injections, avoiding the inconvenience of short term hypothyroidism. A reliable procedure that influences iodine kinetics positively (in term of increasing lesion dose) and predictably, however, is still not available. The application of Li+ might be helpful as well as any other modality to influence iodine kinetics in benign thyroid disease as known from the treatment of benign thyroid disease. 124I-PET/CT allows not only to identify the patients which might potentially be cured by radioiodine therapy but-by pretherapeutic dosimetry-also allows to determine the necessary 131I activity. The introduction of SPECT/CT offers gamma camera based cross sectional imaging for 131I including anatomical correlation. In consequence the diagnostic precision of posttherapeutic imaging is increased.

 
  • Literatur

  • 1 American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer . Cooper DS, Doherty GM, Haugen BR et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009; 19: 11671-214
  • 2 Benua RS, Cicale NR, Sonenberg M et al. The relation of radioiodine dosimetry to results and omplications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med 1962; 87: 171-182
  • 3 Beyer T, Townsend DW, Brun T et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000; 41: 1369-1379
  • 4 British Thyroid Association, Royal College of Physicans. Guidelines for the management ofthyroid cancer – Second edition. 2007 http://www.british-thyroid-association.org/Guidelines/
  • 5 Chow SM, Law SC, Chan JK et al. Papillary microcarcinoma of the thyroid-Prognostic significance of lymph node metastasis and multifocality. Cancer 2003; 98: 31-40
  • 6 Chu SYF, Ekström LP, Firestone RB. The Lund/LBNL nuclear data search. Database version 2.0, (1999): http://nucleardata.nuclear.lu.se/nuclear data/toi/
  • 7 Cohen B, Logothetopoulos JH, Myant NB. Autoradiographic localization of iodine-131 in the salivary glands of the hamster. Nature 1955; 176: 1268-1269
  • 8 DeGrado TR, Turkington TG, Williams JJ et al. Performance characteristics of a whole -body PET scanner. J Nucl Med 1994; 35: 1398-1406
  • 9 Dietlein M, Dressler J, Eschner W et al. Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 3). Nuklearmedizin 2007; 46: 213-219
  • 10 Durante C, Haddy N, Baudin E et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006; 91: 2892-2899
  • 11 Erdi YE, Macapinlac H, Larson SM et al. Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Pos Imag 1999; 2: 41-46
  • 12 Eschmann SM, Reischl G, Bilger K et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med 2002; 29: 760-767
  • 13 Flower McCready VR. Radionuclide therapy dose calculations: what accuracy can be achieved?. Eur J Nucl Med 1997; 24: 1462-1464
  • 14 Freudenberg LS, Antoch G, Frilling A et al. Combined Metabolic and Morphologic Imaging in Thyroid Carcinoma Patients with Elevated Serum Thyroglobulin and Negative Cervical Ultrasonography: Role of 124I-PET/CT and FDG-PET. Eur J Nucl Med Mol Imaging 2008; 35: 950-957
  • 15 Freudenberg LS, Antoch G, Jentzen W et al. Value of (124)I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 2004; 14: 2092-2098
  • 16 Freudenberg LS, Jentzen W, Görges R et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: Therapeutic impact. Nuklearmedizin 2007; 46: 121-128
  • 17 Freudenberg LS, Jentzen W, Marlowe RJ et al. 124-Iodine Positron Emission Tomography/Computed Tomography Dosimetry in Pediatric Patients with Differentiated Thyroid Cancer. Exp Clin Endocrinol Diabetes 2007; 115: 690-693
  • 18 Freudenberg LS, Jentzen W, Mueller SP et al. Disseminated Iodine-Avid Lung Metastases in Differentiated Thyroid Cancer: A Challenge to 124I-PET. Eur J Nucl Med Mol Imaging 2007; 35: 502-508
  • 19 Freudenberg LS, Jentzen W, Petrich T et al. Lesion dose in differentiated thyroid carcinoma metastases after rhTSH or thyroid hormone withdrawal: 124I PET/CT dosimetric comparisons. Eur J Nucl Med Mol Imaging 2010; 37: 2267-2276
  • 20 Furhang EE, Larson SM, Buranapong P et al. Thyroid cancer dosimetry using clearance fitting. J Nucl Med 1999; 40: 131-136
  • 21 Garsi JP, Schlumberger M, Rubino C et al. Therapeutic administration of 131I for differentiated thyroid cancer: radiation dose to ovaries and outcome of pregnancies. J Nucl Med 2008; 49: 845-852
  • 22 Grünwald F, Schomburg A, Menzel C et al. Changes in the blood picture after radioiodine therapy of thyroid cancer. Med Klin (Munich) 1994; 89: 522-528
  • 23 Hänscheid H, Lassmann M, Luster M et al. Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med 2006; 47: 648-654
  • 24 Hartung V, Jentzen W, Freudenberg L et al. Bone marrow toxicity in radioiodine therapy of differentiated thyroid carcinoma with regard to pretherapeutic blood dosimetry with iodine-124: first versus multiple radioiodine therapy and TSH stimulation with recombinant thyrotropin versus thyroid hormone. Eur J Nuc Med Mol Imaging 2010; 37: 241
  • 25 International Commission on Radiological Protection . Radiation dose to Patients from Radiopharmaceuticals, Publication 80. Oxford: Pergamon Press; 1999
  • 26 Jentzen W, Balschuweit D, Schmitz J et al. The influence of saliva flow stimulation on the absorbed radiation dose to the salivary glands during radioiodine therapy of thyroid cancer using 124I PET(/CT) imaging. Eur J Nucl Med Mol Imaging 2010; 37: 2298-2306
  • 27 Jentzen W, Freudenberg L, Eising EG et al. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med 2008; 49: 1017-1023
  • 28 Jentzen W, Freudenberg L, Eising EG et al. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007; 48: 108-114
  • 29 Jentzen W, Hobbs RF, Stahl A et al. Pre-therapeutic (124)I PET(/CT) dosimetry confirms low average absorbed doses per administered (131)I activity to the salivary glands in radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2010; 37: 884-895
  • 30 Jentzen W, Schneider E, Freudenberg L et al. Relationship between cumulative radiation dose and salivary gland uptake associated with radioiodine therapy of thyroid cancer. Nucl Med Commun 2007; 27: 669-696
  • 31 Knust EJ, Dutschka K, Weinreich R. Preparation of 124I solutions after thermodistillation of irradiated 124TeO2 targets. Appl Radiat Isot 2000; 52: 181-184
  • 32 Lambrecht RM, Woodhouse N, Phillips R et al. Investigational study of iodine-124 with a positron camera. Am J Physiol Imaging 1988; 3: 197-200
  • 33 Lassmann M, Hänscheid H, Chiesa C et al. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 2008; 35: 1405-1412
  • 34 Leenhardt L, Grosclaude P. Epidemiology of thyroid carcinoma over the world. Ann Endocrinol (Paris) 2011; 72: 136-148
  • 35 Lodemann E, Bockisch A, Görges R. Short-term hypothyroidism in thyroid cancer patients and cognitive-motor performance relevant for driving. Psychoneuroendocrinology (in print)
  • 36 Luster M, Clarke SE, Dietlein M et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2008; 35: 1941-1959
  • 37 Ma C, Xie J, Liu W et al. Recombinant human thyrotropin (rhTSH) aided radioiodine treatment for residual or metastatic differentiated thyroid cancer. Cochrane Database Syst Rev 2010; 10 CD008302
  • 38 Maxon HR, Thomas SR, Samaratunga RC. Dosimetric considerations in the radioiodine treatment of macrometastases and micrometastases from differentiated thyroid cancer. Thyroid 1997; 7: 183-187
  • 39 Mazzaferri EL, Jhiang SM. Differentiated thyroid cancer long-term impact of initial therapy. Trans Am Clin Climatol Assoc 1995; 106: 151-168
  • 40 MIRD/Dose Estimate Report No. 7 . Summary of current radiation dose estimates to humans from 123I, 124I, 126I, 130I, and 131I as sodium rose bengal. J Nucl Med Dec 1975; 16 (12) 1214-1217
  • 41 Pacini F, Schlumberger M, Dralle H et al. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 2006; 154: 787-803
  • 42 Pacini F, Schlumberger M, Harmer C et al. Post-surgical use of radioiodine (131I) in patients with papillary and follicular thyroid cancer and the issue of remnant ablation: a consensus report. Eur J Endocrinol 2005; 153: 651-659
  • 43 Pentlow KS, Graham MC, Lambrecht RM et al. Quantitative imaging of iodine-124 with PET. J Nucl Med 1996; 37: 1557-1562
  • 44 Pineda JD, Lee T, Ain K et al. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab May 1995; 80 (05) 1488-1492
  • 45 Pötzi C, Moameni A, Karanikas G et al. Comparison of iodine uptake in tumour and nontumour tissue under thyroid hormone deprivation and with recombinant human thyrotropin in thyroid cancer patients. Clin Endocrinol (Oxf) 2006; 65: 519-523
  • 46 Robbins RJ, Schlumberger MJ. The Evolving Role of 131I for the Treatment of Differentiated Thyroid Carcinoma. J Nucl Med 2005; 46: 28S-37S
  • 47 Rondeau G, Tuttle RM. Similarities and differences in follicular cell-derived thyroid cancer management guidelines used in Europe and the United States. Semin Nucl Med 2011; 41: 89-95
  • 48 Sawka AM, Lea J, Alshehri B et al. A systematic review of the gonadal effects of therapeutic radioactive iodine in male thyroid cancer survivors. Clinical Endocrinology 2008; 68: 610-617
  • 49 Schlumberger M, De Vathaire F, Ceccarelli C et al. Exposure to radioactive iodine-131 for scintigraphy or therapy does not preclude pregnancy in thyroid cancer patients. J Nucl Med 1996; 37: 606-612
  • 50 Schomäcker K, Sudbrock F, Fischer T et al. Exhalation of 131I after radioiodine therapy: measurements in exhaled air. Eur J Nucl Med Mol Imaging 2011; 38: 2165-2172
  • 51 Sgouros G, Kolbert KS, Sheikh A et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004; 45: 1366-1372
  • 52 Stahl AR, Freudenberg L, Bockisch A et al. A novel view on dosimetry-related radionuclide therapy: presentation of a calculatory model and its implementation for radioiodine therapy of metastasized differentiated thyroid carcinoma. ur J Nucl Med Mol Imaging 2009; 36: 1147-1155
  • 53 Tagay S, Herpertz S, Langkafel M et al. Health-related quality of life, depression and anxiety in thyroid cancer patients. Quality of Life Research 2006; 15: 695-703
  • 54 Tagay S, Herpertz S, Langkafel M et al. Health-related quality of life, anxiety and depression in thyroid cancer patients under short-term hypothyroidism and TSH-suppressive levothyroxine treatment. Eur J Endocrinol 2005; 153: 755-763
  • 55 Tagay S, Senf W, Schöpper N et al. Protective factors for anxiety and depression in thyroid cancer patients. Z Psychosom Med Psychother 2007; 53: 62-74
  • 56 Taïeb D, Sebag F, Farman-Ara B et al. Iodine biokinetics and radioiodine exposure after recombinant human thyrotropin-assisted remnant ablation in comparison with thyroid hormone withdrawal. J Clin Endocrinol Metab 2010; 95: 3283-3290
  • 57 Tubiana M, Lacour J, Monnier JP et al. External radiotherapy and radioiodine in the treatment of 359 thyroid cancers. Br J Radiol 1975; 48: 894-907
  • 58 Verburg FA, Stokkel MP, Düren C et al. No survival difference after successful (131)I ablation between patients with initially low-risk and high-risk differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2010; 37: 276-283
  • 59 Yoo J, Cosby R, Driedger A. Preparation with recombinant humanized thyroid-stimulating hormone before radioiodine ablation after thyroidectomy: a systematic review. Curr Oncol 2009; 16: 23-31