Subscribe to RSS
DOI: 10.1055/s-0031-1299785
Genetics of the Dominant Ataxias
Publication History
Publication Date:
21 January 2012 (online)

ABSTRACT
The relevant clinical, genetic, and cell biologic aspects of the dominantly inherited spinocerebellar ataxias (SCAs) are reviewed in this article. SCAs are diseases of the entire nervous system; in addition to cerebellar ataxia, the central (but not obligate) disease feature, many noncerebellar complications can be present as well. There are over 35 genetic subtypes: although those caused by expanded CAG repeats are still the more common ones, the majority of the recent SCAs have been caused by more conventional mutations. Genotype–phenotype correlations do exist and are most clear for the repeat expansion, where repeat length partially explains age at onset, disease severity and progression, and the core clinical phenotype. Some common themes within the disease mechanisms seem to emerge, including misfolding and aggregation, impairment of the protein quality control system, abnormal protein interactions, disruption of gene transcription, RNA toxicity, and changes in glutamate and calcium signaling. Yet despite this exciting progress in the molecular genetic background and suggested corresponding pathways, there is still no drug available that is specifically designed for or targeted at the mechanisms at play.
KEYWORDS
Ataxia - cerebellum - polyglutamine - genotype–phenotype correlations
REFERENCES
- 1
Yakura H, Wakisaka A, Fujimoto S, Itakura K.
Letter: Hereditary ataxia and HL-A.
N Engl J Med.
1974;
291
(3)
154-155
MissingFormLabel
- 2
Orr HT, Chung MY, Banfi S et al..
Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1.
Nat Genet.
1993;
4
(3)
221-226
MissingFormLabel
- 3
David G, Abbas N, Stevanin G et al..
Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion.
Nat Genet.
1997;
17
(1)
65-70
MissingFormLabel
- 4
Imbert G, Saudou F, Yvert G et al..
Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity
to expanded CAG/glutamine repeats.
Nat Genet.
1996;
14
(3)
285-291
MissingFormLabel
- 5
Kawaguchi Y, Okamoto T, Taniwaki M et al..
CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1
Nat Genet.
1994;
8
(3)
221-228
MissingFormLabel
- 6
Koide R, Kobayashi S, Shimohata T et al..
A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding
protein gene: a new polyglutamine disease?.
Hum Mol Genet.
1999;
8
(11)
2047-2053
MissingFormLabel
- 7
Zhuchenko O, Bailey J, Bonnen P et al..
Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions
in the alpha 1A-voltage-dependent calcium channel.
Nat Genet.
1997;
15
(1)
62-69
MissingFormLabel
- 8
Holmes SE, O'Hearn EE, McInnis MG et al..
Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated
with SCA12.
Nat Genet.
1999;
23
(4)
391-392
MissingFormLabel
- 9
Koob MD, Moseley ML, Schut LJ et al..
An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8).
Nat Genet.
1999;
21
(4)
379-384
MissingFormLabel
- 10
Matsuura T, Yamagata T, Burgess DL et al..
Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type
10.
Nat Genet.
2000;
26
(2)
191-194
MissingFormLabel
- 11
Kobayashi H, Abe K, Matsuura T et al..
Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of
spinocerebellar ataxia accompanied by motor neuron involvement.
Am J Hum Genet.
2011;
89
(1)
121-130
MissingFormLabel
- 12
Sato N, Amino T, Kobayashi K et al..
Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats
containing (TGGAA)n.
Am J Hum Genet.
2009;
85
(5)
544-557
MissingFormLabel
- 13
Schöls L, Bauer I, Zühlke C et al..
Do CTG expansions at the SCA8 locus cause ataxia?.
Ann Neurol.
2003;
54
(1)
110-115
MissingFormLabel
- 14
Worth PF, Houlden H, Giunti P, Davis MB, Wood NW.
Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia.
Nat Genet.
2000;
24
(3)
214-215
MissingFormLabel
- 15
Izumi Y, Maruyama H, Oda M et al..
SCA8 repeat expansion: large CTA/CTG repeat alleles are more common in ataxic patients,
including those with SCA6.
Am J Hum Genet.
2003;
72
(3)
704-709
MissingFormLabel
- 16
Sobrido MJ, Cholfin JA, Perlman S, Pulst SM, Geschwind DH.
SCA8 repeat expansions in ataxia: a controversial association.
Neurology.
2001;
57
(7)
1310-1312
MissingFormLabel
- 17
Sulek A, Hoffman-Zacharska D, Zdzienicka E, Zaremba J.
SCA8 repeat expansion coexists with SCA1—not only with SCA6.
Am J Hum Genet.
2003;
73
(4)
972-974
MissingFormLabel
- 18
Moseley ML, Schut LJ, Bird TD, Koob MD, Day JW, Ranum LP.
SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes
may play a role in reduced penetrance.
Hum Mol Genet.
2000;
9
(14)
2125-2130
MissingFormLabel
- 19
Chen DH, Brkanac Z, Verlinde CL et al..
Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant
nonepisodic cerebellar ataxia.
Am J Hum Genet.
2003;
72
(4)
839-849
MissingFormLabel
- 20
van de Warrenburg BP, Verbeek DS, Piersma SJ et al..
Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar
ataxia family.
Neurology.
2003;
61
(12)
1760-1765
MissingFormLabel
- 21
Wang JL, Yang X, Xia K et al..
TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing.
Brain.
2010;
133
(Pt 12)
3510-3518
MissingFormLabel
- 22
Chen DH, Cimino PJ, Ranum LP et al..
The clinical and genetic spectrum of spinocerebellar ataxia 14.
Neurology.
2005;
64
(7)
1258-1260
MissingFormLabel
- 23
Oda M, Maruyama H, Komure O et al..
Possible reduced penetrance of expansion of 44 to 47 CAG/CAA repeats in the TATA-binding
protein gene in spinocerebellar ataxia type 17.
Arch Neurol.
2004;
61
(2)
209-212
MissingFormLabel
- 24
Raskin S, Ashizawa T, Teive HA et al..
Reduced penetrance in a Brazilian family with spinocerebellar ataxia type 10.
Arch Neurol.
2007;
64
(4)
591-594
MissingFormLabel
- 25
van de Warrenburg BP, Frenken CW, Ausems MG et al..
Striking anticipation in spinocerebellar ataxia type 7: the infantile phenotype.
J Neurol.
2001;
248
(10)
911-914
MissingFormLabel
- 26
van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC et al..
Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis.
Neurology.
2002;
58
(5)
702-708
MissingFormLabel
- 27
Moretti P, Blazo M, Garcia L et al..
Spinocerebellar ataxia type 2 (SCA2) presenting with ophthalmoplegia and developmental
delay in infancy.
Am J Med Genet A.
2004;
124A
(4)
392-396
MissingFormLabel
- 28
Globas C, du Montcel ST, Baliko L et al..
Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6.
Mov Disord.
2008;
23
(15)
2232-2238
MissingFormLabel
- 29
Schneider SA, van de Warrenburg BP, Hughes TD et al..
Phenotypic homogeneity of the Huntington disease-like presentation in a SCA17 family.
Neurology.
2006;
67
(9)
1701-1703
MissingFormLabel
- 30
Shan DE, Soong BW, Sun CM, Lee SJ, Liao KK, Liu RS.
Spinocerebellar ataxia type 2 presenting as familial levodopa-responsive parkinsonism.
Ann Neurol.
2001;
50
(6)
812-815
MissingFormLabel
- 31
Visser JE, Bloem BR, van de Warrenburg BP.
PRKCG mutation (SCA-14) causing a Ramsay Hunt phenotype.
Mov Disord.
2007;
22
(7)
1024-1026
MissingFormLabel
- 32
Yamashita I, Sasaki H, Yabe I et al..
A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked
by D19S206 and D19S605 on chromosome 19q13.4-qter.
Ann Neurol.
2000;
48
(2)
156-163
MissingFormLabel
- 33
Robitaille Y, Lopes-Cendes I, Becher M, Rouleau G, Clark AW.
The neuropathology of CAG repeat diseases: review and update of genetic and molecular
features.
Brain Pathol.
1997;
7
(3)
901-926
MissingFormLabel
- 34
Schulz JB, Borkert J, Wolf S et al..
Visualization, quantification and correlation of brain atrophy with clinical symptoms
in spinocerebellar ataxia types 1, 3 and 6.
Neuroimage.
2010;
49
(1)
158-168
MissingFormLabel
- 35
van de Warrenburg BP, Notermans NC, Schelhaas HJ et al..
Peripheral nerve involvement in spinocerebellar ataxias.
Arch Neurol.
2004;
61
(2)
257-261
MissingFormLabel
- 36
Varrone A, Salvatore E, De Michele G et al..
Reduced striatal [123 I]FP-CIT binding in SCA2 patients without parkinsonism.
Ann Neurol.
2004;
55
(3)
426-430
MissingFormLabel
- 37
Durr A.
Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond.
Lancet Neurol.
2010;
9
(9)
885-894
MissingFormLabel
- 38
Trujillo-Martín MM, Serrano-Aguilar P, Monton-Alvarez F, Carrillo-Fumero R.
Effectiveness and safety of treatments for degenerative ataxias: a systematic review.
Mov Disord.
2009;
24
(8)
1111-1124
MissingFormLabel
- 39
Ilg W, Synofzik M, Brötz D, Burkard S, Giese MA, Schöls L.
Intensive coordinative training improves motor performance in degenerative cerebellar
disease.
Neurology.
2009;
73
(22)
1823-1830
MissingFormLabel
- 40
Fonteyn EM, Schmitz-Hübsch T, Verstappen CC et al..
Falls in spinocerebellar ataxias: Results of the EuroSCA Fall Study.
Cerebellum.
2010;
9
(2)
232-239
MissingFormLabel
- 41
van de Warrenburg BP, Hendriks H, Dürr A et al..
Age at onset variance analysis in spinocerebellar ataxias: a study in a Dutch-French
cohort.
Ann Neurol.
2005;
57
(4)
505-512
MissingFormLabel
- 42
Dürr A, Stevanin G, Cancel G et al..
Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological
features.
Ann Neurol.
1996;
39
(4)
490-499
MissingFormLabel
- 43
Cancel G, Gourfinkel-An I, Stevanin G et al..
Somatic mosaicism of the CAG repeat expansion in spinocerebellar ataxia type 3/Machado-Joseph
disease.
Hum Mutat.
1998;
11
(1)
23-27
MissingFormLabel
- 44
Schmitz-Hübsch T, Coudert M, Bauer P et al..
Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms.
Neurology.
2008;
71
(13)
982-989
MissingFormLabel
- 45
Charles P, Camuzat A, Benammar N French Parkinson's Disease Genetic Study Group et al.
Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism?.
Neurology.
2007;
69
(21)
1970-1975
MissingFormLabel
- 46
Kim JY, Kim SY, Kim JM et al..
Spinocerebellar ataxia type 17 mutation as a causative and susceptibility gene in
parkinsonism.
Neurology.
2009;
72
(16)
1385-1389
MissingFormLabel
- 47
Zoghbi HY, Orr HT.
Glutamine repeats and neurodegeneration.
Annu Rev Neurosci.
2000;
23
217-247
MissingFormLabel
- 48
van Ham TJ, Holmberg MA, van der Goot AT et al..
Identification of MOAG-4/SERF as a regulator of age-related proteotoxicity.
Cell.
2010;
142
(4)
601-612
MissingFormLabel
- 49
Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY.
Chaperone suppression of aggregation and altered subcellular proteasome localization
imply protein misfolding in SCA1.
Nat Genet.
1998;
19
(2)
148-154
MissingFormLabel
- 50
Schmidt T, Lindenberg KS, Krebs A et al..
Protein surveillance machinery in brains with spinocerebellar ataxia type 3: redistribution
and differential recruitment of 26S proteasome subunits and chaperones to neuronal
intranuclear inclusions.
Ann Neurol.
2002;
51
(3)
302-310
MissingFormLabel
- 51
Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI.
Progressive disruption of cellular protein folding in models of polyglutamine diseases.
Science.
2006;
311
(5766)
1471-1474
MissingFormLabel
- 52
Chai Y, Berke SS, Cohen RE, Paulson HL.
Poly-ubiquitin binding by the polyglutamine disease protein ataxin-3 links its normal
function to protein surveillance pathways.
J Biol Chem.
2004;
279
(5)
3605-3611
MissingFormLabel
- 53
Mao Y, Senic-Matuglia F, Di Fiore PP, Polo S, Hodsdon ME, De Camilli P.
Deubiquitinating function of ataxin-3: insights from the solution structure of the
Josephin domain.
Proc Natl Acad Sci U S A.
2005;
102
(36)
12700-12705
MissingFormLabel
- 54
Helmlinger D, Hardy S, Sasorith S et al..
Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes.
Hum Mol Genet.
2004;
13
(12)
1257-1265
MissingFormLabel
- 55
Klement IA, Skinner PJ, Kaytor MD et al..
Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease
in SCA1 transgenic mice.
Cell.
1998;
95
(1)
41-53
MissingFormLabel
- 56
Kordasiewicz HB, Thompson RM, Clark HB, Gomez CM.
C-termini of P/Q-type Ca2+ channel alpha1A subunits translocate to nuclei and promote
polyglutamine-mediated toxicity.
Hum Mol Genet.
2006;
15
(10)
1587-1599
MissingFormLabel
- 57
Helmlinger D, Hardy S, Abou-Sleymane G et al..
Glutamine-expanded ataxin-7 alters TFTC/STAGA recruitment and chromatin structure
leading to photoreceptor dysfunction.
PLoS Biol.
2006;
4
(3)
e67
MissingFormLabel
- 58
Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY.
Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes
in SCA1.
Nat Neurosci.
2000;
3
(2)
157-163
MissingFormLabel
- 59
Shah AG, Friedman MJ, Huang S, Roberts M, Li XJ, Li S.
Transcriptional dysregulation of TrkA associates with neurodegeneration in spinocerebellar
ataxia type 17.
Hum Mol Genet.
2009;
18
(21)
4141-4152
MissingFormLabel
- 60
Tsai CC, Kao HY, Mitzutani A et al..
Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the
silencing mediator of retinoid and thyroid hormone receptors.
Proc Natl Acad Sci U S A.
2004;
101
(12)
4047-4052
MissingFormLabel
- 61
Tsuda H, Jafar-Nejad H, Patel AJ et al..
The AXH domain of Ataxin-1 mediates neurodegeneration through its interaction with
Gfi-1/Senseless proteins.
Cell.
2005;
122
(4)
633-644
MissingFormLabel
- 62
Tait D, Riccio M, Sittler A et al..
Ataxin-3 is transported into the nucleus and associates with the nuclear matrix.
Hum Mol Genet.
1998;
7
(6)
991-997
MissingFormLabel
- 63
Li F, Macfarlan T, Pittman RN, Chakravarti D.
Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor
activities.
J Biol Chem.
2002;
277
(47)
45004-45012
MissingFormLabel
- 64
Dick KA, Margolis JM, Day JW, Ranum LP.
Dominant non-coding repeat expansions in human disease.
Genome Dyn.
2006;
1
67-83
MissingFormLabel
- 65
Li LB, Yu Z, Teng X, Bonini NM.
RNA toxicity is a component of ataxin-3 degeneration in Drosophila.
Nature.
2008;
453
(7198)
1107-1111
MissingFormLabel
- 66
Hsu RJ, Hsiao KM, Lin MJ et al..
Long tract of untranslated CAG repeats is deleterious in transgenic mice.
PLoS ONE.
2011;
6
(1)
e16417
MissingFormLabel
- 67
Wang LC, Chen KY, Pan H et al..
Muscleblind participates in RNA toxicity of expanded CAG and CUG repeats in Caenorhabditis elegans
.
Cell Mol Life Sci.
2011;
68
(7)
1255-1267
MissingFormLabel
- 68
Daughters RS, Tuttle DL, Gao W et al..
RNA gain-of-function in spinocerebellar ataxia type 8.
PLoS Genet.
2009;
5
(8)
e1000600
MissingFormLabel
- 69
Chen IC, Lin HY, Lee GC et al..
Spinocerebellar ataxia type 8 larger triplet expansion alters histone modification
and induces RNA foci.
BMC Mol Biol.
2009;
10
9
MissingFormLabel
- 70
Lin CH, Chen CM, Hou YT et al..
The CAG repeat in SCA12 functions as a cis element to up-regulate PPP2R2B expression.
Hum Genet.
2010;
128
(2)
205-212
MissingFormLabel
- 71
Rudrabhatla P, Pant HC.
Role of protein phosphatase 2A in Alzheimer's disease.
Curr Alzheimer Res.
2011;
8
(6)
623-632
MissingFormLabel
- 72
Grady DL, Ratliff RL, Robinson DL, McCanlies EC, Meyne J, Moyzis RK.
Highly conserved repetitive DNA sequences are present at human centromeres.
Proc Natl Acad Sci U S A.
1992;
89
(5)
1695-1699
MissingFormLabel
- 73
Bakalkin G, Watanabe H, Jezierska J et al..
Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia
type 23.
Am J Hum Genet.
2010;
87
(5)
593-603
MissingFormLabel
- 74
Wang Y, Qin ZH.
Molecular and cellular mechanisms of excitotoxic neuronal death.
Apoptosis.
2010;
15
(11)
1382-1402
MissingFormLabel
- 75
Hollmann M, Heinemann S.
Cloned glutamate receptors.
Annu Rev Neurosci.
1994;
17
31-108
MissingFormLabel
- 76
Perkel DJ, Hestrin S, Sah P, Nicoll RA.
Excitatory synaptic currents in Purkinje cells.
Proc Biol Sci.
1990;
241
(1301)
116-121
MissingFormLabel
- 77
Saegusa H, Wakamori M, Matsuda Y et al..
Properties of human Cav2.1 channel with a spinocerebellar ataxia type 6 mutation expressed
in Purkinje cells.
Mol Cell Neurosci.
2007;
34
(2)
261-270
MissingFormLabel
- 78
Watase K, Barrett CF, Miyazaki T et al..
Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction
with age-dependent accumulation of mutant CaV2.1 channels.
Proc Natl Acad Sci U S A.
2008;
105
(33)
11987-11992
MissingFormLabel
- 79
Knöpfel T, Grandes P.
Metabotropic glutamate receptors in the cerebellum with a focus on their function
in Purkinje cells.
Cerebellum.
2002;
1
(1)
19-26
MissingFormLabel
- 80
Hirai H.
Modification of AMPA receptor clustering regulates cerebellar synaptic plasticity.
Neurosci Res.
2001;
39
(3)
261-267
MissingFormLabel
- 81
Adachi N, Kobayashi T, Takahashi H et al..
Enzymological analysis of mutant protein kinase Cgamma causing spinocerebellar ataxia
type 14 and dysfunction in Ca2+ homeostasis.
J Biol Chem.
2008;
283
(28)
19854-19863
MissingFormLabel
- 82
Ikeda Y, Dick KA, Weatherspoon MR et al..
Spectrin mutations cause spinocerebellar ataxia type 5.
Nat Genet.
2006;
38
(2)
184-190
MissingFormLabel
- 83
Knight MA, Hernandez D, Diede SJ et al..
A duplication at chromosome 11q12.2-11q12.3 is associated with spinocerebellar ataxia
type 20.
Hum Mol Genet.
2008;
17
(24)
3847-3853
MissingFormLabel
- 84
Serra HG, Byam CE, Lande JD, Tousey SK, Zoghbi HY, Orr HT.
Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells
of transgenic mice.
Hum Mol Genet.
2004;
13
(20)
2535-2543
MissingFormLabel
- 85
Figueroa KP, Minassian NA, Stevanin G et al..
KCNC3: phenotype, mutations, channel biophysics-a study of 260 familial ataxia patients.
Hum Mutat.
2010;
31
(2)
191-196
MissingFormLabel
- 86
Shakkottai VG, Xiao M, Xu L et al..
FGF14 regulates the intrinsic excitability of cerebellar Purkinje neurons.
Neurobiol Dis.
2009;
33
(1)
81-88
MissingFormLabel
- 87
Maltecca F, Magnoni R, Cerri F, Cox GA, Quattrini A, Casari G.
Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type
28, causes mitochondria-mediated Purkinje cell dark degeneration.
J Neurosci.
2009;
29
(29)
9244-9254
MissingFormLabel
- 88
Jeitner TM, Muma NA, Battaile KP, Cooper AJ.
Transglutaminase activation in neurodegenerative diseases.
Future Neurol.
2009;
4
(4)
449-467
MissingFormLabel
- 89
Van Damme P, Veldink JH, van Blitterswijk M et al..
Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2.
Neurology.
2011;
76
(24)
2066-2072
MissingFormLabel
Bart P.C. van de Warrenburg
Department of Neurology, Radboud University Nijmegen Medical Centre
Nijmegen, The Netherlands
Email: b.vandewarrenburg@neuro.umcn.nl