Deutsche Zeitschrift für Onkologie 2012; 44(1): 4-10
DOI: 10.1055/s-0031-1298679
© Karl F. Haug Verlag MVS Medizinverlage Stuttgart GmbH & Co. KG

Entstehung und Metastasierung des Pankreaskarzinoms mit Fokus auf Tumorhypoxie, EMT und Krebsstammzellen

Ingrid Herr
1   Molekulare OnkoChirurgie, Universitätsklinikum Heidelberg und Deutsches Krebsforschungszentrum Heidelberg
2   Allgemein, Viszeral & Transplantationschirurgie, Universität Heidelberg
Li Liu
1   Molekulare OnkoChirurgie, Universitätsklinikum Heidelberg und Deutsches Krebsforschungszentrum Heidelberg
2   Allgemein, Viszeral & Transplantationschirurgie, Universität Heidelberg
Vanessa Rausch
1   Molekulare OnkoChirurgie, Universitätsklinikum Heidelberg und Deutsches Krebsforschungszentrum Heidelberg
2   Allgemein, Viszeral & Transplantationschirurgie, Universität Heidelberg
Markus W. Büchler
2   Allgemein, Viszeral & Transplantationschirurgie, Universität Heidelberg
› Author Affiliations
Further Information

Publication History

Publication Date:
28 March 2012 (online)


Entstehung, Wachstum und Metastasierung von malignen Tumoren erscheinen heute aufgrund jüngster wissenschaftlicher Erkenntnisse in einem neuen Licht. Die Krebsstammzell- (KSZ-)Theorie erklärt, warum Tumore wachsen, streuen und eine konventionelle Tumortherapie überleben. Am Beispiel des aggressiv und hoch invasiv wachsenden Bauchspeicheldrüsenkrebs gibt der vorliegende Artikel eine Übersicht über Mechanismen des Wachstums und der Metastasierung von malignen Tumoren. Dabei fokussiert der Artikel auf die Rolle der Tumorhypoxie bei der Entstehung von KSZ und der Epithelialen-Mesenchymalen Transition (EMT) bei der Metastasierung.


Due to new scientific findings, initiation, growth and metastasis of malignant tumors appear in new light today. The cancer stem cell (CSC) theory explains why tumors expand, invade and survive conventional tumor therapy. Using the example of aggressive and highly invasive pancreatic cancer the present article gives an overview about mechanisms of initiation and metastasis of this tumor entity. In the last years growing evidence underlines the importance of the tumor microenvironment as rout of tumor growth and metastasis. An important factor at this is tumor hypoxia, since an oxygen-depleted tumor region activates a signal transduction cascade, which favors tumor growth and metastasis. Under hypoxic growth conditions the presence of cancer stem cell markers is enhanced, which are thereafter induced to undergo epithelial-mesenchymal transition by oxygen-depletion. Several in vitro and animal examinations demonstrate that hypoxia creates the prerequisites for invasion of tumor cells to distant organs. Therapeutic aim of a new concept in therapy of pancreatic cancer does therefore not focus to elimination of cancer stem cells itself. Rather the rout of development of cancer stem cells should be targeted by elimination of tumor hypoxia.

  • Literatur

  • 1 Food, nutrition, and the prevention of cancer: a global perspective. Washington, DC: American Institute for Cancer Research, World Cancer Research Fund; 1997
  • 2 Akakura N, Kobayashi M, Horiuchi I et al. Constitutive expression of hypoxia-inducible factor-1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res 2001; 61: 6548-54
  • 3 Bailey JM, Singh PK, Hollingsworth MA. Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins. J Cell Biochem 2007; 102: 829-39
  • 4 Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756-60
  • 5 Bladt F, Riethmacher D, Isenmann S et al. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 1995; 376: 768-71
  • 6 Blouw B, Song H, Tihan T et al. The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 2003; 4: 133-46
  • 7 Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730-7
  • 8 Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 1998; 58: 1408-16
  • 9 Broxmeyer HE, Orschell CM, Clapp DW et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201: 1307-18
  • 10 Büchler P, Reber HA, Tomlinson J et al. Transcriptional regulation of uPAR by HIF-1 is crucial for invasion of pancreatic and liver cancer. Neoplasia 2009; 11: 196-206
  • 11 Cano CE, Motoo Y, Iovanna JL. Epithelial-to-mesenchymal transition in pancreatic adenocarcinoma. Scientific World Journal 2010; 10: 1947-57
  • 12 Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249-57
  • 13 Chu GC, Kimmelman AC, Hezel AF, DePinho RA. Stromal biology of pancreatic cancer. J Cell Biochem 2007; 101: 887-907
  • 14 Clarke MF, Dick JE, Dirks PB et al. Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006; 66: 9339-44
  • 15 Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17: 313-9
  • 16 Cohnheim V. Congenitales, quergestreiftes Muskelsarkom der Nieren. Arch Pathol Anat Physiol Klin Med 1875; 65: 64-9
  • 17 Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 2005; 45: 872-7
  • 18 Erkan M, Reiser-Erkan C, Michalski CW et al. Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 2009; 11: 497-508
  • 19 Feldmann G, Beaty R, Hruban RH, Maitra A. Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pancreat Surg 2007; 14: 224-32
  • 20 Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clin Invest 2010; 120: 41-50
  • 21 Fukuda R, Zhang H, Kim JW et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007; 129: 111-22
  • 22 Heddleston JM, Li Z, Lathia JD et al. Hypoxia inducible factors in cancer stem cells. Br J Cancer 2010; 102: 789-95
  • 23 Helmlinger G, Yuan F, Dellian M, Jain RK. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 1997; 3: 177-82
  • 24 Hermann PC, Huber SL, Herrler T et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 2007; 1: 313-23
  • 25 Hoffmann AC, Mori R, Vallbohmer D et al. High expression of HIF1a is a predictor of clinical outcome in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA, VEGF, and bFGF. Neoplasia 2008; 10: 674-9
  • 26 Holzman DC. Pancreatic cancer: will incremental advances begin to make a difference?. J Natl Cancer Inst 2010; 102: 1821-3
  • 27 Hruban RH, Maitra A, Goggins M. Update on pancreatic intraepithelial neoplasia. Int J Clin Exp Pathol 2008; 1: 306-16
  • 28 Huber MA, Azoitei N, Baumann B et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 2004; 114: 569-81
  • 29 Huber MA, Beug H, Wirth T. Epithelial-mesenchymal transition: NF-kappaB takes center stage. Cell Cycle 2004; 3: 1477-80
  • 30 Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005; 17: 548-58
  • 31 Ide T, Kitajima Y, Miyoshi A et al. Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. Int J Cancer 2006; 119: 2750-9
  • 32 Ischenko I, Seeliger H, Kleespies A et al. Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications. Langenbecks Arch Surg 2010; 395: 1-10
  • 33 Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277-300
  • 34 Kallifatidis G, Rausch V, Baumann B et al. Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling. Gut 2009; 58: 949-63
  • 35 Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell 2007; 129: 465-72
  • 36 Koong AC, Mehta VK, Le QT et al. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 2000; 48: 919-22
  • 37 Leung DW, Cachianes G, Kuang WJ et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306-9
  • 38 Li C, Heidt DG, Dalerba P et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67: 1030-7
  • 39 Li C, Wu JJ, Hynes M et al. c-Met Is a Marker of Pancreatic Cancer Stem Cells and Therapeutic Target. Gastroenterology 2011; 141(6): 2218-27
  • 40 Li J, Ng J, Allendorf J, Saif MW. Locally advanced pancreatic adenocarcinoma: are we making progress?. Highlights from the „2011 ASCO Annual Meeting“. Chicago, IL, USA; June 3–7, 2011 JOP 2011; 12: 347-50
  • 41 Mahadevan D, Von Hoff DD. Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 2007; 6: 1186-97
  • 42 Maier HJ, Schmidt-Strassburger U, Huber MA et al. NF-kappaB promotes epithelial-mesenchymal transition, migration and invasion of pancreatic carcinoma cells. Cancer Lett 2010; 295: 214-28
  • 43 Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer: an update. Dig Dis 2010; 28: 645-56
  • 44 Mani SA, Guo W, Liao MJ et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704-15
  • 45 Masamune A, Shimosegawa T. Signal transduction in pancreatic stellate cells. J Gastroenterol 2009; 44: 249-60
  • 46 Mjaatvedt CH, Markwald RR. Induction of an epithelial-mesenchymal transition by an in vivo adheron-like complex. Dev Biol 1989; 136: 118-28
  • 47 Oberstein PE, Saif MW. First-Line Treatment for Advanced Pancreatic Cancer. Highlights from the „2011 ASCO Gastrointestinal Cancers Symposium“. San Francisco, CA, USA. January 20–22, 2011 Jop 2011; 12: 96-100
  • 48 Oshima Y, Suzuki A, Kawashimo K et al. Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology 2007; 132: 720-32
  • 49 Rausch V, Liu L, Kallifatidis G et al. Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res 2010; 70: 5004-13
  • 50 Robert Koch Institut R. Krebs in Deutschland 2005/2006 - Häufigkeiten und Trends. Gesundheitsberichterstattung des Bundes 2010; 7. Ausgabe, 2010: 40
  • 51 Robert Koch Institut R. Sterblichkeit, Todesursachen und regionale Unterschiede. Gesundheitsberichterstattung des Bundes 2010; Heft 52: 39
  • 52 Sarkar FH, Li Y, Wang Z, Kong D. Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir 2009; 64: 489-500
  • 53 Savagner P, Boyer B, Valles AM et al. Modulations of the epithelial phenotype during embryogenesis and cancer progression. Cancer Treat Res 1994; 71: 229-49
  • 54 Senger DR, Galli SJ, Dvorak AM et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983-5
  • 55 Seufferlein T, Adler G. [The S3 guideline exocrine pancreatic cancer]. Med Klin (Munich) 2009; 104: 869-74
  • 56 Simeone DM. Pancreatic cancer stem cells: implications for the treatment of pancreatic cancer. Clin Cancer Res 2008; 14: 5646-8
  • 57 Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 2010; 70: 5649-69
  • 58 Thiebaut AC, Jiao L, Silverman DT et al. Dietary fatty acids and pancreatic cancer in the NIH-AARP diet and health study. J Natl Cancer Inst 2009; 101: 1001-11
  • 59 Thompson EW, Torri J, Sabol M et al. Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clin Exp Metastasis 1994; 12: 181-94
  • 60 Vasseur S, Tomasini R, RTournaire R, Iovanna JL. Hyoxia induced tumor metabolic switch contributes to pancreatic cancer aggressiveness. Cancers 2010; 2: 2138-52
  • 61 Virchow R. „Embryonal-rest“ hypothesis. Anatomie und Physiologie für klinische Medizin 1855; 8: 23-54
  • 62 Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510-4
  • 63 Wellner U, Schubert J, Burk UC et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009; 11: 1487-95
  • 64 Werner J, Büchler MW. Pankreaskarzinom: ein Schritt vorwärts in der Behandlung. Dtsch Med Wochenschr 2011; 136: 1807-10
  • 65 Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011; 11: 393-410
  • 66 Xiong HQ, Abbruzzese JL, Lin E et al. NF-kappaB activity blockade impairs the angiogenic potential of human pancreatic cancer cells. Int J Cancer 2004; 108: 181-8
  • 67 Yokoi K, Fidler IJ. Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine. Clin Cancer Res 2004; 10: 2299-306
  • 68 Zhong H, De Marzo AM, Laughner E et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 1999; 59: 5830-5
  • 69 Zhou W, Kallifatidis G, Baumann B et al. Dietary polyphenol quercetin targets pancreatic cancer stem cells. Int J Oncol 2010; 37: 551-61
  • 70 Zhu Z, Friess H, diMola FF et al. Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol 1999; 17: 2419-28