Planta Med 2012; 78(09): 919-925
DOI: 10.1055/s-0031-1298460
Natural Product Chemistry
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Orthoquinone and Naphthalenone Derivatives from Berrya ammonilla and Their Anti-Inflammatory Activity

Tsung-Hsien Chou
1   Graduate Institute of Pharmaceutical Sciences, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
,
Sheng-Kan Chien
2   Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung, Taiwan
,
Tsong-Long Hwang
3   Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
,
Dau-Chang Wei
2   Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung, Taiwan
,
Ih-Sheng Chen
1   Graduate Institute of Pharmaceutical Sciences, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
,
Ping-Jyun Sung
4   National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
,
Ming-Jen Cheng
5   Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute (FIRDI), Hsinchu, Taiwan
,
Sheng-Zehn Yang
6   Department of Forest Resource, Management and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan
,
Ken-Ming Chang
1   Graduate Institute of Pharmaceutical Sciences, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
,
Jih-Jung Chen
2   Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung, Taiwan
› Author Affiliations
Further Information

Publication History

received 16 January 2012
revised 21 March 2012

accepted 25 March 2012

Publication Date:
12 April 2012 (online)

Abstract

A new orthoquinone, berryammone A (1), and four new naphthalenone derivatives, berryammone B (2), berryammone C (3), 6-O-methylberryammone C (4), and 4-O-methylberryammone C (5), have been isolated from the stem of Berrya ammonilla, together with eleven known compounds (616). The structures of these new compounds were determined through spectroscopic and MS analyses. Among the isolates, compounds 13, 5, (+)-pinoresinol (6), and betulinic acid (12) exhibited inhibition (IC50 ≤ 4.41 µM) of superoxide anion generation by human neutrophils in response to formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB). Compounds 1, 2, and 5 also inhibited fMLP/CB-induced elastase release with IC50 values ≤ 3.95 µM.

These authors contributed equally to this work.


Supporting Information

 
  • References

  • 1 Liu TS, Lo HC. Tiliaceae. Flora of Taiwan. 2nd. edition, Vol. 3. Taipei: Editorial Committee of the Flora of Taiwan; 1993: 723-736
  • 2 Chen JJ, Lin RW, Duh CY, Huang HY, Chen IS. Flavones and cytotoxic constituents from the stem bark of Muntingia calabura . J Chin Chem Soc 2004; 51: 665-670
  • 3 Chen JJ, Lee HH, Duh CY, Chen IS. Cytotoxic chalcones and flavonoids from the leaves of Muntingia calabura . Planta Med 2005; 71: 970-973
  • 4 Kaneda N, Pezzuto JM, Soejarto DD, Kinghorn AD, Farnsworth NR, Santisuk T, Tuchinda P, Udchachon J, Reutrakul V. Plant anticancer agents, XLVIII. New cytotoxic flavonoids from Muntingia calabura roots. J Nat Prod 1991; 54: 196-206
  • 5 Nshimo CM, Pezzuto JM, Kinghorn AD, Farnsworth NR. Cytotoxic constituents of Muntingia calagura leaves and stems collected in Thailand. Int J Pharmacognosy 1993; 31: 77-81
  • 6 Su BN, Park EJ, Vigo JS, Graham JG, Cabieses F, Fong HHS, Pezzuto JM, Kinghorn AD. Activity-guided isolation of the chemical constituents of Muntingia calabura using a quinone reductase induction assay. Phytochemistry 2003; 63: 335-341
  • 7 Chen JJ, Lee HH, Shih CD, Liao CH, Chen IS, Chou TH. New dihydrochalcones and anti-platelet aggregation constituents from the leaves of Muntingia calabura . Planta Med 2007; 73: 572-577
  • 8 Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest 1968; 97: 77-89
  • 9 Jauregui HO, Hayner NT, Driscoll JL, Williams-Holland R, Lipsky MH, Galletti PM. Trypan blue dye uptake and lactate dehydrogenase in adult rat hepatocytes – freshly isolated cells, cell suspensions, and primary monolayer cultures. In Vitro 1981; 17: 1100-1110
  • 10 Babior BM, Kipnes RS, Curnutte JT. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 1973; 52: 741-744
  • 11 Hwang TL, Leu YL, Kao SH, Tang MC, Chang HL. Viscolin, a new chalcone from Viscum coloratum, inhibits human neutrophil superoxide anion and elastase release via a cAMP-dependent pathway. Free Radic Biol Med 2006; 41: 1433-1441
  • 12 Lee IS, Kaneda N, Suttisri R, El-Lakany AM, Sabri NN, Kinghorn AD. New orthoquinones from the roots of Salvia lanigera . Planta Med 1998; 64: 632-634
  • 13 Delgado G, del Socorro Olivares M, Chávez MI, Ramírez-Apan T, Linares E, Bye R, Espinosa-García FJ. Antiinflammatory constituents from Heterotheca inuloides . J Nat Prod 2001; 64: 861-864
  • 14 Miyazawa M, Kasahara H, Kameoka H. Biotransformation of lignans: a specific microbial oxidation of (+)-eudesmin and (+)-magnolin by Aspergillus niger . Phytochemistry 1993; 34: 1501-1507
  • 15 Swain NA, Brown RCD, Bruton G. A versatile stereoselective synthesis of endo,exo-furofuranones: application to the enantioselective synthesis of furofuran lignans. J Org Chem 2004; 69: 122-129
  • 16 Chen JJ, Huang SY, Duh CY, Chen IS, Wang TC, Fang HY. A new cytotoxic amide from the stem wood of Hibiscus tiliaceus . Planta Med 2006; 72: 935-938
  • 17 Chen JJ, Duh CY, Huang HY, Chen IS. Cytotoxic constituents of Piper sintenense . Helv Chim Acta 2003; 86: 2058-2064
  • 18 Li YC, Kuo YH. A monoterpenoid and two simple phenols from heartwood of Ficus microcarpa . Phytochemistry 1998; 49: 2417-2419
  • 19 Sung TV, Steglich W, Adam G. Triterpene glycosides from Schefflera octophylla . Phytochemistry 1991; 30: 2349-2356
  • 20 Chen JJ, Wu HM, Peng CF, Chen IS, Chu SD. seco-Abietane diterpenoids, a phenylethanoid derivative, and antitubercular constituents from Callicarpa pilosissima . J Nat Prod 2009; 72: 223-228
  • 21 Chen JJ, Chou TH, Peng CF, Chen IS, Yang SZ. Antitubercular dihydroagarofuranoid sesquiterpenes from the roots of Microtropis fokienensis . J Nat Prod 2007; 70: 202-205
  • 22 Chou TH, Chen IS, Sung PJ, Peng CF, Shieh PC, Chen JJ. A new dihydroagarofuranoid sesquiterpene from Microtropis fokienensis with antituberculosis activity. Chem Biodivers 2007; 4: 1594-1600
  • 23 Malech HL, Gallin JI. Current concepts: immunology. Neutrophils in human disease. N Engl J Med 1987; 317: 687-694
  • 24 Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 2000; 80: 617-653
  • 25 Okajima K, Harada N, Uchiba M. Ranitidine reduces ischemia/reperfusion-induced liver injury in rats by inhibiting neutrophil activation. J Pharmacol Exp Ther 2002; 301: 1157-1165
  • 26 Ennis M. Neutrophils in asthma pathophysiology. Curr Allergy Asthma Rep 2003; 3: 159-165
  • 27 Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 2004; 61: 481-497
  • 28 Borregaard N. The human neutrophil. Function and dysfunction. Eur J Haematol 1998; 41: 401-413
  • 29 Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 2003; 5: 1317-1327
  • 30 Roos D, van Bruggen R, Meischl C. Oxidative killing of microbes by neutrophils. Microbes Infect 2003; 5: 1307-1315
  • 31 Chen Q, Powell DW, Rane MJ, Singh S, Butt W, Klein JB, McLeish KR. Akt phosphorylates p 47phox and mediates respiratory burst activity in human neutrophils. J Immunol 2003; 170: 5302-5308
  • 32 Sadhu C, Dick K, Tino WT, Staunton DE. Selective role of PI3K delta in neutrophil inflammatory responses. Biochem Biophys Res Commun 2003; 308: 764-769