Arzneimittelforschung 2008; 58(4): 160-167
DOI: 10.1055/s-0031-1296487
CNS-active Drugs · Hypnotics · Psychotropics · Sedatives
Editio Cantor Verlag Aulendorf (Germany)

Effect of MAO-B Inhibition against Ischemia-induced Oxidative Stress in the Rat Brain

Comparison with a rational antioxidant
Mona Seif-El-Nasr
Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
,
Amina S Atia
Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
,
Rania M Abdelsalam
Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
› Author Affiliations
Further Information

Publication History

Publication Date:
15 December 2011 (online)

Summary

An increasing number of reports suggest the involvement of oxidative stress in neurodegenerative diseases where the increased formation of reactive oxygen species (ROS) leads to neuronal damage and cell death. Dopamine may contribute to neurodegenerative disorders such as Parkinson’s disease and ischemia/reperfusion-induced damage. Monoamine oxidase (MAO) enzyme (particularly MAO-B) is responsible for metabolizing dopamine and plays an important role in oxidative stress through altering the redox state of neuronal and glial cells. MAO participates in the generation of hydroxyl radicals during ischemia/reperfusion. This suggests the possible use of MAO inhibitors as neuroprotective agents for treating ischemic injury.

The protective effect of deprenyl (N-methyl-N-(1-methyl-2-phenyl-ethyl)-prop-2-yn-1-amine, CAS 14611-51-9) (2 and 10 mg/kg), a MAO-B inhibitor, and β-carotene (10 and 20 mg/kg), a natural antioxidant, was examined in a rat model of cerebral ischemia. Ischemia was induced in rats by bilateral carotid artery occlusion for 1 h followed by declamping for another hour.

The effect of the drugs on the brain activity of lactate dehydrogenase (LDH) and some of the oxidative stress biomarkers such as brain activity of superoxide dismutase (SOD) and catalase (CAT) enzymes and brain malondialdehyde (MDA) content was determined. In addition, the content of catecholamines such as noradrenaline (NA) and dopamine (DA) was determined.

Deprenyl decreased the ischemia-induced elevation of LDH activity and MDA content and normalized the SOD activity. In addition, deprenyl increased the CAT activity back to normal, and increased the noradrenaline and dopamine content in the brain of rats.

β-Carotene administration ameliorated the effect of ischemia followed by reperfusion (I/R) demonstrated as decreasing the LDH activity and MDA content and by increasing the SOD activity. The drug also increased CAT activity in the brain of rats. However, β-carotene did not alter the NA and DA content.

These results indicate that deprenyl protected the rat brains against the ischemia-induced oxidative damage, an effect which might be explained through multiple mechanisms, possibly due to reduction of dopamine catabolism with a subsequent increased activity on dopaminergic D2 receptors and suppressing the action of ROS as well.

 
  • References

  • 1 Luer MS, Rhoney DH, Hughes M, Hatton J. Newpharmacological strategies for acute neuronal injury. Pharmacotherapy. 1996; 16: 830-848
  • 2 Manevich Y, Al-Mehdi A, Muzykantov V, Fisher AB. Oxidative burst and NO generation as initial response to ischemia in flow-adapted endothelial cells. Am. J. Physiol Heart Circ Physiol. 2001; 280 (5) H2126-235
  • 3 France-Lanord V, Brugg B, Michel PP, Agid Y, Ruberg M. Mitochondrial free radical signal in ceramide-dependent apoptosis: a putative mechanism for neuronal death in Parkinson’s disease. J. Neurochem. 1997; 69 (4) 612-621
  • 4 Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta. 1998; 1366 (1–2) 151-65
  • 5 Cheung N, Pascoe C, Giardina S, John C, Beart P. Micromolar L-glutamate induces extensive apoptosis in an apoptot-ic-necrotic continuum of insult-dependent, excitotoxic injury in cultured cortical neurons. Neuropharmacology. 1998; 37: 1419-1429
  • 6 Martin L, Al-Abdulla N, Brambrink A, Kirsch J, Sieber F, Portera-Cailliau C. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Res Bull. 1998; 46: 281-309
  • 7 Fornstedt B. Role of catechol autooxidation in the degeneration of dopamine neurons. Acta Neurol Scand Suppl. 1990; 129: 12-14
  • 8 Maker HS, Weiss C, Silides DJ, Cohen G. Coupling of dopamine oxidation (monoamine oxidase activity) to glutathione oxidation via the generation of hydrogen peroxide in rat brain homogenates. J Neurochem. 1981; 36 (2) 589-93
  • 9 Graham DG. Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol. 1978; 14 (4) 633-643
  • 10 Segura-Aguilar J, Metodiewa D, Baez S. The possible role of one-electron reduction of aminochrome in the neurodegenerative process of dopaminergic system. Neurotox Res. 2001; 3: 157-165
  • 11 Benedetti MS, Dostert P. Monoamine oxidase, brain ageing and degenerative diseases. Biochem Pharmacol. 1989; 38: 555-561
  • 12 Wersinger C, Chen J, Sidhu A. Bimodal induction of dopamine-mediated striatal neurotoxicity is mediated through both activation of D1 dopamine receptors and autoxidation. Mol Cell Neurosci. 2004; 25 (1) 124-137
  • 13 Magyar K, Haberle D. Neuroprotective and neuronal rescue effects of selegiline. Neurobiology. 1999; 7: 175-190
  • 14 Matsubara K, Senda T, Uezono T, Awaya T, Ogawa S, Chiba K et al. L-deprenyl prevents the cell hypoxia induced by dopaminergic neurotoxins, MPP+, and β-carbolinium: a microdialysis study in rats. Neurosci Lett. 2001; 302: 65-68
  • 15 Carrillo MC, Kitani K, Kanai S, Sato Y, Miyasaka K, Ivy GO. (-)-Deprenyl increases activities of superoxide dismutase and catalase in certain brain regions in old male mice. Life Sci. 1994; 54 (14) 975-981
  • 16 Burton GW, Ingold KU. Beta-carotene: an unusual type of lipid antioxidant. Science. 1984; 224: 569-573
  • 17 Woods J A, Bilton R F, Young A J. Beta-carotene enhances hydrogen peroxide-induced DNA damage in hepatocellular HepG2 cells. FEBS Lett. 1999; 449: 255-258
  • 18 Woutersen RA, Wolterbeek AP, Appel MJ, van der Berg H, Goldbohm RA, Feron VJ. Safety evaluation of synthetic beta-carotene. Crit Rev Toxicol. 1999; 29 (6) 515-542
  • 19 Kuntz E, Borlak J, Riss G, Aebischer CP, Bachman H, Seifert N et al. Transcriptomics does not show adverse effects of beta carotene in A/J mice exposed to smoke for 2 weeks. Arch Biochem Biophys. 2007; 465 (2) 336-346
  • 20 El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH. Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and beta carotene. Food Chem Toxicol. 2004; 42 (10) 1563-1571
  • 21 Seif-El-Nasr M, Abd-El-Fattah AA. Lipid peroxide, phospholipids, glutathione levels and superoxide dismutase activity in rat brain after ischemia: effect on ginko biloba extract. Pharmacol Res. 1995; 32: 273-278
  • 22 Seif-El-Nasr M, Nuglisch J, Krieglstein J. Prevention of ischemia-induced cerebral hypothermia by controlling the environmental temperature. J Pharmacol Toxicol Methods. 1992; 27 (1) 23-26
  • 23 Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissue by thiobarbituric acid test. Anal Biochem. 1978; 86 (1) 271-278
  • 24 Buhl SN, Jackson KY. Quantitative determination of lactate dehydrogenase in serum. Clin Chem. 1978; 24: 828
  • 25 Marklund S, Marklund G. Involvement of superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974; 47 (3) 469-474
  • 26 Aebi H. Catalase in vitro. Methods Enzymol. 1984; 105: 121-126
  • 27 Ciarlone A E. Further modification of a fluorometric method for analyzing brain amines. Microchemical J. 1978; 23: 9-12
  • 28 Shaheen AA, Abd-El-Fattah AA, Seif-El-Nasr M. Influence of verapamil on the efficacy of vitamin E in preventing the ischemia-reperfusion-induced biochemical derangement in cerebral cortex of rat. Arzneimittel-Forschung (Drug Research). 1996; 46: 670-673
  • 29 Ishii M, Yamamoto T, Shimizu S, Sano A, Mosmose K, Kuroiwa Y. Possible involvement of nitric oxide synthase in oxidative stress-induced endothelial cell injury. Pharmacol Toxicol. 1997; 80: 181-191
  • 30 Seif-El-Nasr M, Mahran LG, El-Abhar HS, Khalifa AE, El-Denshary ESM. Possible neuroprotective effects of melatonin against ischemia/reperfusion insult in rat brain. Med Sci Res. 1999; 27: 605-608
  • 31 Seif-El-Nasr M, Fahim AT. (2001): Antioxidant effect of N-omega-nitro-L-arginine methyl ester (L-NAME) on global cerebral ischemia in a rat model. Arzneimittel-Forschung (Drug Research). 2001; 51 (8) 628-32
  • 32 Hansen AJ. Effect of anoxia on ion distribution in the brain. Physiol Rev. 1985; 65: 101-148
  • 33 Chen T, Qian YZ, Rice A, Zhu JP, Di X, Bullock R. Brain lactate uptake increases at the site of impact after traumatic brain injury. Brain Res. 2000; 861 (2) 281-287
  • 34 Choi DW, Giffard RG, Monyer H, Goldberg MP. Modification of “ischemic” injury in cortical cell culture by extracellular acidity. In: Krieglestein J, Oberpichler H. editors Pharmacology of cerebral ischemia. Stuttgart: Wissenschaftlische Verlagsgesellschaft; 1990. p. 177-181
  • 35 Cremer JE, Cunningham VJ, Partridge WM, Braun LD, Oldendorf WH. Kinetics of blood-brain barrier transport of pyruvate, lactate and glucose in suckling, weanling and adult rats. J Neurochem. 1979; 3: 439-455
  • 36 Homi HM, Freitas JJ, Curi R, Velasco IT, Junior BA. Changes in superoxide dismutase and catalase activities of rat brain regions during early global transient ischemia/reperfusion. Neurosci Lett. 2002; 333 (1) 37-40
  • 37 Nita DA, Nita V, Spulber S, Moldovan M, Popa DP, Zagrean AM et al. Oxidative damage following cerebral ischemia depends on reperfusion a biochemical study in rat. J Cell Mol Med. 2001; 5 (2) 163-70
  • 38 Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci. 2004; 74 (8) 969-85
  • 39 Sutherland G, Bose R, Louw D, Pinsky C. Global elevation of brain superoxide dismutase activity following forebrain ischemia in rat. Neurosci Lett. 1991; 128 (2) 169-72
  • 40 Fukuhara T, Gotoh M, Kawauchi M, Asari S, Ohmoto T. Endogenous superoxide dismutase activity in reperfusion injuries. Acta Neurochir Suppl (Wien). 1994; 60: 250-25
  • 41 Kontos HA. Oxygen radicals in cerebral vascular injury. Circ Res. 1985; 57: 508-516
  • 42 Siesjö BK, Agardh CD, Bengtsson F. Free radicals and brain damage. Cerebrovasc Brain Metab Rev. 1989; 1: 165-211
  • 43 Singh I, Gulati S, Orak JK, Singh AK. Expression of antioxidant enzymes in rat kidney during ischemia-reperfusion. Mol Cell Biochem. 1993; 125: 97-104
  • 44 Dobashi K, Ghosh B, Orak JK, Singh I, Singh K. Kidney ischemia-reperfusion: modulation of antioxidant defenses. Mol Cell Biochem. 2000; 205: 1-11
  • 45 Bromont C, Lundgren J, Pahlmark K. Increased lipid peroxidation in vulnerable brain regions after transient fore-brain ischemia in rats. Stroke. 1989; 20: 918-924
  • 46 Numagami Y, Ohnishi ST. S-allylcysteine inhibits free radical production, lipid peroxidation and neuronal damage in rat brain ischemia. J Nutr. 2001; 131 (3s) 1100S-1105S
  • 47 Kim SO, Cho IS, Gu HK, Lee DH, Lim H, Yoo SE. KR-31378 protects neurons from ischemia-reperfusion brain injury by attenuating lipid peroxidation and glutathione loss. Eur J. Pharmacol. 2004; 487 (1–3) 81-91
  • 48 Siu FK, Lo SC, Leung MC. Electroacupuncture reduces the extent of lipid peroxidation by increasing superoxide dismutase and glutathione peroxidase activities in ischemic-reperfused rat brains. Neurosci Lett. 2004; 354 (2) 158-162
  • 49 Farooqui AA, Horrocks LA. Involvement of glutamate receptors, lipases, and phospholipases in long-term potentiation and neurodegeneration. J Neurosci Res. 1994; 38 (1) 6-11
  • 50 Hashimoto N, Matsumoto T, Mabe H, Hashitani T, Nishino H. Dopamine has inhibitory and accelerating effects on ischemia-induced neuronal cell damage in the rat striatum. Brain Res Bull. 1994; 33 (3) 281-288
  • 51 Zhang J, Niu X. Changes of monoamines, purines and amino acids in rat striatum as measured by intercerebral microdialysis during ischemia/reperfusion. Chin Med Sci J. 1994; 9 (4) 225-229
  • 52 Carrillo MC, Kanai S, Nokubo M, Kitani K. (-) deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci. 1991; 48 (6) 517-521
  • 53 Vizuete ML, Steffen V, Ayala A, Cano J, Machado A. Protective effect of deprenyl against 1-methyl-4-phenylpyridini-um neurotoxicity in rat striatum. Neurosci Lett. 1993; 152 (1–2) 113-116
  • 54 Carrillo MC, Kitani K, Kanai S, Sato Y, Miyasaka K, Ivy GO. The effect of a long-term (6 month) treatment with deprenyl on antioxidant enzyme activities in selective brain regions in old female Fischer-344 rats. Biochem Pharmacol. 1994; 47: 1333-1338
  • 55 Carrillo MC, Kitani K, Kanai S, Sato Y, Ivy GO, Miyasaka K. Long term treatment with (-)-deprenyl reduces the optimal dose as well as the effective dose range for increasing antioxidant enzyme activities in old mouse brain. Life Sci. 1996; 59 (13) 1047-1057
  • 56 Thiffault C, Aumont N, Quirion R, Poirier J. Effect of MPTP and L-deprenyl on antioxidant enzymes and lipid peroxidation levels in mouse brain. J Neurochem. 1995; 65: 2725-2733
  • 57 Kitani K, Kanai S, Ivy GO, Carrillo MC. Pharmacological modifications of endogenous antioxidant enzymes with special reference to the effects of deprenyl: a possible antioxidant strategy. Mech Ageing Dev. 1999; 111 (2–3) 211-221
  • 58 Maia FD, Pitombeira BS, Araujo DT, Cunha GM, Viana GS. L-Deprenyl prevents lipid peroxidation and memory deficits produced by cerebral ischemia in rats. Cell Mol Neurobiol. 2004; 24 (1) 87-100
  • 59 Rehncrona S, Hauge FN, Siesjö BK. Enhancement of iron catalysed free radical formation by acidosis in brain homo-genates: difference in effect of lactic acid and CO2 . J Cereb Blood Flow Metab. 1989; 9: 58-65
  • 60 Mytilineou C, Radcliffe P, Leonardi EK, Werner P, Olanow C. L-deprenyl protects mesencephalic dopamine neurons from glutamate receptor-mediated toxicity in vitro. J Neurochem. 1997; 68: 33-39
  • 61 Wu RM, Chiueh CC, Pert A, Murphy DL. Apparent antioxidant effect of l-deprenyl on hydroxyl radical formation and nigral injury elicited by MPP+ in vivo . Eur J Pharmacol. 1993; 243: 241-247
  • 62 Thomas CE, Huber EW, Ohlweiler DF. Hydroxyl and peroxyl radical trapping by the monoamine oxidase-B inhibitors deprenyl and MDL 72,974A: Implications for protection of biological amines. Free Rad Biol Med. 1997; 22: 733-737
  • 63 Ebadi M, Srinivasan SK, Baxi MD. Oxidative stress and antioxidant therapy in Parkinson’s disease. Prog Neurobiol. 1996; 48: 1-19
  • 64 Cohen G, Spina MB. Deprenyl suppresses the oxidant stress associated with increased dopamine turnover. Ann Neurol. 1989; 26 (5) 689-90
  • 65 Naoi M, Maruyama W, Yagi K, Youdim M. Anti-apoptotic function of L-(-) deprenyl (selegiline) and related compounds. Neurobiology. 2000; 8: 69-80
  • 66 Szende B, Bokonyi G, Bosci J, Keri G, Timar F, Magyar K. Anti-apoptotic and apoptotic action of L- (-) deprenyl and its metabolites. J Neural Transm. 2001; 108: 25-33
  • 67 Ebadi M, Sharma S, Shavali S, El Refaey H. Neuroprotective actions of selegiline. J Neurosci Res. 2002; 67: 285-289
  • 68 Biagini G, Zoli M, Fuxe K, Agnati LF. L-deprenyl increases GFAP immunoreactivity selectively in activated astrocytes in rat brain. Neurol Report. 1993; 4: 955-958
  • 69 de la Cruz CP, Revilla E, Steffen V, Rodriguez-Gomez JA, Cano J, Machado A. Protection of the aged substantia nigra of the rat against oxidative damage by (-)-deprenyl. Br J Pharmacol. 1996; 117: 1756-1760
  • 70 Ansari KS, Yu PH, Kruck TP, Tatton WG. Rescue of axotomized immature rat-facial motoneurons by R(-)-deprenyl: stereospecificity and independence from monoamine oxidase inhibition. J Neurosci. 1993; 13: 4042-4053
  • 71 Nistico G, Ciriolo MR, Fiskin K, Iannone M, De Martino A, Rotilio G. NGF restores decrease in catalase activity and increases superoxide dismutase and glutathione peroxidase activity in the brain of aged rats. Free Radic Biol Med. 1992; 12 (3) 177-81
  • 72 Zhang P, Damier P, Hirsch EC, Agid Y, Ceballos-Picot I, Sinet PM et al. Preferential expression of superoxide dismutase messenger RNA in melanized neurons in human mesencephalon. Neuroscience. 1993; 55 (1) 167-75
  • 73 O’Neill MJ, Hicks CA, Ward MA, Cardwell G.P., Reymann JM, Allain H et al. Dopamine D2 receptor agonist protect against ischemia induced hippocampal neurodegeneration in global cerebral ischemia. Eur J Pharmacol. 1998; 352: 37-46
  • 74 Mizuno BE, Mori H, Kondo T. Potential of neuroprotective therapy in Parkinson’s disease. CNS Drugs. 1994; 1: 45-56
  • 75 Paiva SAR, Novo R, Matsubara BB, Matsubara LS, Azevedo PS, Minicucci MF et al. β-carotene attenuates te paradoxical effet of tobacco smoke on te mortality of rats after experimental myocardial infraction. J Nutr. 2005; 135: 2109-2113
  • 76 Shapiro SS, Mott DJ, Machlin LJ. Kinetic characteristics of β-carotene uptake and depletion in rat tissue. J Nutr. 1984; 114 (10) 1924-1933
  • 77 Sies H, Stahl W. Vitamin E and C, β-carotene, and other carotenoids as antioxidants. Am. J Clin Nutr. 1995; 62: 1315S-1321S
  • 78 Bolanos J P, Heales SJR, Land JM, Clark JB. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurons and astrocytes in primary culture. J Neurochem. 1995; 64: 1965-1972
  • 79 Holmsen H, Robkin L. Effects of antimycin A and 2-deoxyglucose on energy metabolism in washed human platelets. Thromb Haemost. 1980; 42: 1460-1472
  • 80 Lenaz G, Cavazzoni M, Genova ML, D’Aurelio M, Merlo Pich M, Pallotti F et al. Oxidative stress, antioxidant defense and aging. Bio Factors. 1998; 8: 195-204
  • 81 Saghir AN, Rickards H, Pall HS. Postprandial changes in superoxide dismutase activity in subjects with Gilles de la Tourette syndrome and controls. Exp Neurol. 1997; 144 (2) 420-2
  • 82 Omaye ST, Burri BJ, Swendseid ME, Hanning SM, Briggs LA, Bowen HT et al. Blood antioxidant changes in young women following beta-carotene depletion and repletion. J Am Coll Nutr. 1996; 15: 467-474