Semin Hear 2011; 32(4): 354-366
DOI: 10.1055/s-0031-1291939
© Thieme Medical Publishers

The Clinical Picture of Large Vestibular Aqueduct Syndrome

Kristen L. Janky1 , M. Geraldine Zúñiga1 , C. Matthew Stewart1
  • 1Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
Further Information

Publication History

Publication Date:
24 October 2011 (online)

ABSTRACT

Large vestibular aqueduct syndrome (LVAS) is one of the most common congenital inner ear malformations. LVAS is generally diagnosed via high-resolution computed tomography (CT) as a vestibular aqueduct midpoint greater than 1.5 mm; however, other criteria have recently been proposed. LVAS can be found in isolation as well as in conjunction with both syndromic and nonsyndromic hereditary hearing loss. The typical presentation of LVAS is that of down-sloping hearing loss, oftentimes accompanied by a conductive component, with progressions in hearing loss occurring either spontaneously or paired with a precipitating event. CT and traditional audiometry including bone conduction testing, tympanometry, and acoustic reflex testing should be considered part of a traditional workup for LVAS. Other clinical tools such as magnetic resonance imaging and vestibular function testing, specifically vestibular evoked myogenic potential (VEMP), also have proven useful in identifying this population. This review presents a clinical case of bilateral LVAS and reviews the common clinical presentation of LVAS including diagnostic guidelines, audiometric configuration, vestibular function testing outcomes, and treatment options.

REFERENCES

  • 1 Valvassori G E, Clemis J D. The large vestibular aqueduct syndrome.  Laryngoscope. 1978;  88 723-728
  • 2 Wilbrand H F. The vestibular and cochlear aqueduct.  Rev Laryngol Otol Rhinol (Bord). 1984;  105 101-109
  • 3 Jackler R K, Luxford W M, House W F. Congenital malformations of the inner ear: a classification based on embryogenesis.  Laryngoscope. 1987;  97 ((3 Pt 2, Suppl 40)) 2-14
  • 4 Boston M, Halsted M, Meinzen-Derr J et al.. The large vestibular aqueduct: a new definition based on audiologic and computed tomography correlation.  Otolaryngol Head Neck Surg. 2007;  136 972-977
  • 5 Levenson M J, Parisier S C, Jacobs M, Edelstein D R. The large vestibular aqueduct syndrome in children. A review of 12 cases and the description of a new clinical entity.  Arch Otolaryngol Head Neck Surg. 1989;  115 54-58
  • 6 Wilson D F, Hodgson R S, Talbot J M. Endolymphatic sac obliteration for large vestibular aqueduct syndrome.  Am J Otol. 1997;  18 101-106 discussion 106-107
  • 7 Oh A K, Ishiyama A, Baloh R W. Vertigo and the enlarged vestibular aqueduct syndrome.  J Neurol. 2001;  248 971-974
  • 8 Dewan K, Wippold II F J, Lieu J E. Enlarged vestibular aqueduct in pediatric sensorineural hearing loss.  Otolaryngol Head Neck Surg. 2009;  140 552-558
  • 9 Pyle G M. Embryological development and large vestibular aqueduct syndrome.  Laryngoscope. 2000;  110 1837-1842
  • 10 Jackler R K, De La Cruz A. The large vestibular aqueduct syndrome.  Laryngoscope. 1989;  99 1238-1242 discussion 1242-1243
  • 11 Wu C C, Chen Y S, Chen P J, Hsu C J. Common clinical features of children with enlarged vestibular aqueduct and Mondini dysplasia.  Laryngoscope. 2005;  115 132-137
  • 12 Yetiser S, Kertmen M, Ozkaptan Y. Vestibular disturbance in patients with large vestibular aqueduct syndrome (LVAS).  Acta Otolaryngol. 1999;  119 641-646
  • 13 Arjmand E M, Webber A. Audiometric findings in children with a large vestibular aqueduct.  Arch Otolaryngol Head Neck Surg. 2004;  130 1169-1174
  • 14 Zalzal G H, Tomaski S M, Vezina L G, Bjornsti P, Grundfast K M. Enlarged vestibular aqueduct and sensorineural hearing loss in childhood.  Arch Otolaryngol Head Neck Surg. 1995;  121 23-28
  • 15 Bilgen C, Kirkim G, Kirazli T. Middle ear impedance measurements in large vestibular aqueduct syndrome.  Auris Nasus Larynx. 2009;  36 263-268
  • 16 Tong K A, Harnsberger H R, Dahlen R T, Carey J C, Ward K. Large vestibular aqueduct syndrome: a genetic disease?.  AJR Am J Roentgenol. 1997;  168 1097-1101
  • 17 Lin C Y, Lin S L, Kao C C, Wu J L. The remediation of hearing deterioration in children with large vestibular aqueduct syndrome.  Auris Nasus Larynx. 2005;  32 99-105
  • 18 Steinbach S, Brockmeier S J, Kiefer J. The large vestibular aqueduct—case report and review of the literature.  Acta Otolaryngol. 2006;  126 788-795
  • 19 Zhou G, Gopen Q, Kenna M A. Delineating the hearing loss in children with enlarged vestibular aqueduct.  Laryngoscope. 2008;  118 2062-2066
  • 20 Merchant S N, Nakajima H H, Halpin C et al.. Clinical investigation and mechanism of air-bone gaps in large vestibular aqueduct syndrome.  Ann Otol Rhinol Laryngol. 2007;  116 532-541
  • 21 Minor L B, Carey J P, Cremer P D, Lustig L R, Streubel S O, Ruckenstein M J. Dehiscence of bone overlying the superior canal as a cause of apparent conductive hearing loss.  Otol Neurotol. 2003;  24 270-278
  • 22 Merchant S N, Rosowski J J. Conductive hearing loss caused by third-window lesions of the inner ear.  Otol Neurotol. 2008;  29 282-289
  • 23 Sheykholeslami K, Schmerber S, Habiby Kermany M, Kaga K. Vestibular-evoked myogenic potentials in three patients with large vestibular aqueduct.  Hear Res. 2004;  190 161-168
  • 24 Brantberg K, Bergenius J, Tribukait A. Vestibular-evoked myogenic potentials in patients with dehiscence of the superior semicircular canal.  Acta Otolaryngol. 1999;  119 633-640
  • 25 Streubel S O, Cremer P D, Carey J P, Weg N, Minor L B. Vestibular-evoked myogenic potentials in the diagnosis of superior canal dehiscence syndrome.  Acta Otolaryngol Suppl. 2001;  545 41-49
  • 26 Hvidberg-Hansen J, Jorgensen M B. The inner ear in Pendred's syndrome.  Acta Otolaryngol. 1968;  66 129-135
  • 27 Brown M T, Cunningham M J, Ingelfinger J R, Becker A N. Progressive sensorineural hearing loss in association with distal renal tubular acidosis.  Arch Otolaryngol Head Neck Surg. 1993;  119 458-460
  • 28 Zakzouk S M, Sobki S H, Mansour F, al Anazy F H. Hearing impairment in association with distal renal tubular acidosis among Saudi children.  J Laryngol Otol. 1995;  109 930-934
  • 29 Karet F E, Finberg K E, Nelson R D et al.. Mutations in the gene encoding B1 subunit of H + -ATPase cause renal tubular acidosis with sensorineural deafness.  Nat Genet. 1999;  21 84-90
  • 30 Andreucci E, Bianchi B, Carboni I et al.. Inner ear abnormalities in four patients with dRTA and SNHL: clinical and genetic heterogeneity.  Pediatr Nephrol. 2009;  24 2147-2153
  • 31 Smith R J, Schwartz C. Branchio-oto-renal syndrome.  J Commun Disord. 1998;  31 411-420 quiz 421
  • 32 Kemperman M H, Stinckens C, Kumar S, Huygen P L, Joosten F B, Cremers C W. Progressive fluctuant hearing loss, enlarged vestibular aqueduct, and cochlear hypoplasia in branchio-oto-renal syndrome.  Otol Neurotol. 2001;  22 637-643
  • 33 Stinckens C, Standaert L, Casselman J W et al.. The presence of a widened vestibular aqueduct and progressive sensorineural hearing loss in the branchio-oto-renal syndrome. A family study.  Int J Pediatr Otorhinolaryngol. 2001;  59 163-172
  • 34 Abdelhak S, Kalatzis V, Heilig R et al.. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family.  Nat Genet. 1997;  15 157-164
  • 35 Chen A, Francis M, Ni L et al.. Phenotypic manifestations of branchio-oto-renal syndrome.  Am J Med Genet. 1995;  58 365-370
  • 36 González-García J A, Ibáñez A, Ramírez-Camacho R, Rodríguez A, García-Berrocal J R, Trinidad A. Enlarged vestibular aqueduct: looking for genotypic-phenotypic correlations.  Eur Arch Otorhinolaryngol. 2006;  263 971-976
  • 37 Madden C, Halsted M J, Hopkin R J, Choo D I, Benton C, Greinwald Jr J H. Temporal bone abnormalities associated with hearing loss in Waardenburg syndrome.  Laryngoscope. 2003;  113 2035-2041
  • 38 Talbot J M, Wilson D F. Computed tomographic diagnosis of X-linked congenital mixed deafness, fixation of the stapedial footplate, and perilymphatic gusher.  Am J Otol. 1994;  15 177-182
  • 39 Satar B, Mukherji S K, Telian S A. Congenital aplasia of the semicircular canals.  Otol Neurotol. 2003;  24 437-446
  • 40 Manzari L. Enlarged vestibular aqueduct (EVA) related with recurrent benign paroxysmal positional vertigo (BPPV).  Med Hypotheses. 2008;  70 61-65
  • 41 Spiegel J H, Lalwani A K. Large vestibular aqueduct syndrome and endolymphatic hydrops: two presentations of a common primary inner-ear dysfunction?.  J Laryngol Otol. 2009;  123 919-921
  • 42 Pendred V. Deaf autism and goiter.  Lancet. 1896;  2 523
  • 43 Gorlin R J. Genetic hearing loss associated with endocrine and metabolic disorders. In: Gorlin R J, ed. Hereditary Hearing Loss and Its Syndromes. New York, NY: Oxford University Press; 1995: 337-339
  • 44 Choi B Y, Stewart A K, Madeo A C et al.. Hypo-functional SLC26A4 variants associated with nonsyndromic hearing loss and enlargement of the vestibular aqueduct: genotype-phenotype correlation or coincidental polymorphisms?.  Hum Mutat. 2009;  30 599-608
  • 45 Everett L A, Glaser B, Beck J C et al.. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS).  Nat Genet. 1997;  17 411-422
  • 46 Li X C, Everett L A, Lalwani A K et al.. A mutation in PDS causes non-syndromic recessive deafness.  Nat Genet. 1998;  18 215-217
  • 47 Sheffield V C, Kraiem Z, Beck J C et al.. Pendred syndrome maps to chromosome 7q21-34 and is caused by an intrinsic defect in thyroid iodine organification.  Nat Genet. 1996;  12 424-426
  • 48 Bidart J M, Lacroix L, Evain-Brion D et al.. Expression of Na+/I- symporter and Pendred syndrome genes in trophoblast cells.  J Clin Endocrinol Metab. 2000;  85 4367-4372
  • 49 Fugazzola L, Cerutti N, Mannavola D, Vannucchi G, Beck-Peccoz P. The role of pendrin in iodide regulation.  Exp Clin Endocrinol Diabetes. 2001;  109 18-22
  • 50 Soleimani M, Greeley T, Petrovic S et al.. Pendrin: an apical Cl-/OH-/HCO3- exchanger in the kidney cortex.  Am J Physiol Renal Physiol. 2001;  280 F356-F364
  • 51 Scott D A, Karniski L P. Human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange.  Am J Physiol Cell Physiol. 2000;  278 C207-C211
  • 52 Everett L A, Morsli H, Wu D K, Green E D. Expression pattern of the mouse ortholog of the Pendred's syndrome gene (Pds) suggests a key role for pendrin in the inner ear.  Proc Natl Acad Sci U S A. 1999;  96 9727-9732
  • 53 Scott D A, Wang R, Kreman T M et al.. Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4).  Hum Mol Genet. 2000;  9 1709-1715
  • 54 Scinicariello F, Murray H E, Smith L, Wilbur S, Fowler B A. Genetic factors that might lead to different responses in individuals exposed to perchlorate.  Environ Health Perspect. 2005;  113 1479-1484
  • 55 Iwasaki S, Tsukamoto K, Usami S, Misawa K, Mizuta K, Mineta H. Association of SLC26A4 mutations with clinical features and thyroid function in deaf infants with enlarged vestibular aqueduct.  J Hum Genet. 2006;  51 805-810
  • 56 Berrettini S, Neri E, Forli F et al.. Large vestibular aqueduct in distal renal tubular acidosis. High-resolution MR in three cases.  Acta Radiol. 2001;  42 320-322
  • 57 Berrettini S, Forli F, Franceschini S S, Ravecca F, Massimetti M, Neri E. Distal renal tubular acidosis associated with isolated large vestibular aqueduct and sensorineural hearing loss.  Ann Otol Rhinol Laryngol. 2002;  111 (5 Pt 1) 385-391
  • 58 Joshua B, Kaplan D M, Raveh E, Lotan D, Anikster Y. Audiometric and imaging characteristics of distal renal tubular acidosis and deafness.  J Laryngol Otol. 2008;  122 193-198
  • 59 Shinjo Y, Kaga K, Igarashi T. Distal renal tubular acidosis associated with large vestibular aqueduct and sensorineural hearing loss.  Acta Otolaryngol. 2005;  125 667-670
  • 60 Berrettini S, Forli F, Bogazzi F et al.. Large vestibular aqueduct syndrome: audiological, radiological, clinical, and genetic features.  Am J Otolaryngol. 2005;  26 363-371
  • 61 Ceruti S, Stinckens C, Cremers C W, Casselman J W. Temporal bone anomalies in the branchio-oto-renal syndrome: detailed computed tomographic and magnetic resonance imaging findings.  Otol Neurotol. 2002;  23 200-207
  • 62 Tassabehji M, Read A P, Newton V E et al.. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene.  Nature. 1992;  355 635-636
  • 63 Tassabehji M, Newton V E, Read A P. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene.  Nat Genet. 1994;  8 251-255
  • 64 Bondurand N, Dastot-Le Moal F, Stanchina L et al.. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4.  Am J Hum Genet. 2007;  81 1169-1185
  • 65 Brunner H G, van Bennekom A, Lambermon E M et al.. The gene for X-linked progressive mixed deafness with perilymphatic gusher during stapes surgery (DFN3) is linked to PGK.  Hum Genet. 1988;  80 337-340
  • 66 Clementi M, Tenconi R, Turolla L, Silvan C, Bortotto L, Artifoni L. Apparent CHARGE association and chromosome anomaly: chance or contiguous gene syndrome.  Am J Med Genet. 1991;  41 246-250
  • 67 Aramaki M, Udaka T, Kosaki R et al.. Phenotypic spectrum of CHARGE syndrome with CHD7 mutations.  J Pediatr. 2006;  148 410-414
  • 68 Lalani S R, Safiullah A M, Molinari L M, Fernbach S D, Martin D M, Belmont J W. SEMA3E mutation in a patient with CHARGE syndrome.  J Med Genet. 2004;  41 e94
  • 69 Morimoto A K, Wiggins III R H, Hudgins P A et al.. Absent semicircular canals in CHARGE syndrome: radiologic spectrum of findings.  AJNR Am J Neuroradiol. 2006;  27 1663-1671
  • 70 Valvassori G E, Dobben G D. Multidirectional and computerized tomography of the vestibular aqueduct in Meniere's disease.  Ann Otol Rhinol Laryngol. 1984;  93 (6 Pt 1) 547-550
  • 71 Sando I, Ikeda M. The vestibular aqueduct in patients with Meniere's disease. A temporal bone histopathological investigation.  Acta Otolaryngol. 1984;  97 558-570
  • 72 Hebbar G K, Rask-Andersen H, Linthicum Jr F H. Three-dimensional analysis of 61 human endolymphatic ducts and sacs in ears with and without Menière's disease.  Ann Otol Rhinol Laryngol. 1991;  100 219-225
  • 73 Yamamoto E, Mizukami C, Isono M, Ohmura M, Hirono Y. Observation of the external aperture of the vestibular aqueduct using three-dimensional surface reconstruction imaging.  Laryngoscope. 1991;  101 480-483
  • 74 Yamamoto E, Mizukami C. Development of the vestibular aqueduct in Menière's disease.  Acta Otolaryngol Suppl. 1993;  504 46-50
  • 75 Takeda T, Sawada S, Kakigi A, Saito H. Computed radiographic measurement of the dimensions of the vestibular aqueduct in Menière's disease.  Acta Otolaryngol Suppl. 1997;  528 80-84
  • 76 Sennaroglu L, Yilmazer C, Basaran F, Sennaroglu G, Gursel B. Relationship of vestibular aqueduct and inner ear pressure in Ménière's disease and the normal population.  Laryngoscope. 2001;  111 1625-1630
  • 77 Miyamoto R T, Bichey B G, Wynne M K, Kirk K I. Cochlear implantation with large vestibular aqueduct syndrome.  Laryngoscope. 2002;  112 (7 Pt 1) 1178-1182
  • 78 Chen Y W, Wu C M. Cochlear implantation in patients with large vestibular aqueduct syndrome (LVAS).  Cochlear Implants Int. 2004;  5 (Suppl 1) 124-126
  • 79 Asma A, Anouk H, Luc V H, Brokx J P, Cila U, Van De Heyning P. Therapeutic approach in managing patients with large vestibular aqueduct syndrome (LVAS).  Int J Pediatr Otorhinolaryngol. 2010;  74 474-481

Kristen L JankyAu.D. Ph.D. 

Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins Outpatient Center, Johns Hopkins University

601 N. Caroline St., 6th Floor Room 6030D, Baltimore, MD 21287-0910

Email: kristen.janky@boystown.org

    >