Neuroradiologie Scan 2012; 02(03): 185-200
DOI: 10.1055/s-0031-1291699
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Grenzzoneninfarkte: Pathophysiologie und Kennzeichen in der Bildgebung[1]

Border zone infarcts: pathophysiologic and imaging characteristics
Rajiv Mangla
,
Balasubramanya Kolar
,
Jeevak Almast
,
Sven E. Ekholm
Further Information

Publication History

Publication Date:
15 July 2012 (online)

Zusammenfassung

Grenzzonen- oder Wasserscheideninfarkte sind ischämische Läsionen, die an charakteristischen Stellen zwischen den Versorgungsgebieten von 2 großen Arterien auftreten. Diese Läsionen machen etwa 10 % aller Hirninfarkte aus und sind in der Fachliteratur ausführlich beschrieben. Ihre Pathophysiologie ist noch nicht vollständig entschlüsselt, aber eine allgemein anerkannte Hypothese geht davon aus, dass eine verminderte Perfusion in den distalen Bereichen der Gefäßgebiete zu einer Infarktanfälligkeit führt. Es werden 2 Arten von Grenzzoneninfarkten unterschieden: äußere (kortikale) und innere (subkortikale). Um das jeweils beste bildgebende Verfahren für den Umgang mit solchen Infarkten auszuwählen, ist es wichtig, die zugrunde liegenden Kausalzusammenhänge zu verstehen. Innere Grenzzoneninfarkte werden hauptsächlich durch hämodynamische Beeinträchtigung verursacht, während man davon ausgeht, dass äußere Grenzzoneninfarkte eher das Resultat einer Embolie und nicht immer mit einer Hypoperfusion assoziiert sind. Es wurden verschiedene bildgebende Verfahren eingesetzt, um das Vorhandensein und das Ausmaß hämodynamischer Beeinträchtigung oder Minderperfusion in Assoziation mit Grenzzoneninfarkten zu bestimmen. Einige Befunde (wie multiple kleine innere Infarkte) haben sich als unabhängige Prädiktoren nachfolgender ischämischer Schlaganfälle erwiesen. Eine Kombination mehrerer moderner Techniken (z. B. Diffusions- und Perfusionsmagnetresonanztomografie und -computertomografie, Positronenemissionstomografie, transkranieller Doppler-Ultraschall) kann hilfreich sein, um den pathophysiologischen Prozess zu identifizieren, eine frühe klinische Diagnose zu stellen, über die Therapie zu entscheiden und eine Prognose über die Behandlungsergebnisse abzugeben.

Abstract

Border zone or watershed infarcts are ischemic lesions that occur in characteristic locations at the junction between two main arterial territories. These lesions constitute approximately 10 % of all brain infarcts and are well described in the literature. Their pathophysiology has not yet been fully elucidated, but a commonly accepted hypothesis holds that decreased perfusion in the distal regions of the vascular territories leaves them vulnerable to infarction. Two types of border zone infarcts are recognized: external (cortical) and internal (subcortical). To select the most appropriate methods for managing these infarcts, it is important to understand the underlying causal mechanisms. Internal border zone infarcts are caused mainly by hemodynamic compromise, whereas external border zone infarcts are believed to result from embolism but not always with associated hypoperfusion. Various imaging modalities have been used to determine the presence and extent of hemodynamic compromise or misery perfusion in association with border zone infarcts, and some findings (e. g., multiple small internal infarcts) have proved to be independent predictors of subsequent ischemic stroke. A combination of several advanced techniques (e. g., diffusion and perfusion magnetic resonance imaging and computed tomography, positron emission tomography, transcranial Doppler ultrasonography) can be useful for identifying the pathophysiologic process, making an early clinical diagnosis, guiding management, and predicting the outcome.

1 © 2011 The Radiological Society of North America. All rights reserved. Originally puplished in English in RadioGraphics 2011; 31: 1201 – 1214. Online puplished in 10.1148 /rg.315105014. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.


 
  • Literatur

  • 1 Pozzi S. Sur un cas de cirrhose atrophique granuleuse disseminee des circonvolutions cerebrales. Encephale 1883; 3: 155-177
  • 2 Schneider M. Durchblutung und Sauerstoffversorgung des Gehirns. Verh Dtsch Tes Kreislaufforsch 1953; 19: 3-12
  • 3 Torvik A. The pathogenesis of watershed infarcts in the brain. Stroke 1984; 15: 221-223
  • 4 Romanul FC, Abramowicz A. Changes in brain and pial vessels in arterial border zones. Arch Neurol 1964; 11: 40-65
  • 5 Adams JH, Brierley JB, Connor RCR et al. The effects of systemic hypotension upon the human brain: clinical and neuropathological observations in 11 cases. Brain 1966; 89: 235-268
  • 6 Brierley JB, Prior PF, Calverley J et al. The pathogenesis of ischaemic neuronal damage along the cerebral arterial boundary zones in Papioanubis. Brain 1980; 103: 929-965
  • 7 DelSette M, Eliasziw M, Streifler JY et al. For the North American Symptomatic Carotid Endarterectomy (NASCET) Group. Internal borderzone infarction: a marker for severe stenosis in patients with symptomatic internal carotid artery disease. Stroke 2000; 31: 631-636
  • 8 Momjian-Mayor I, Baron JC. The pathophysiology of watershed infarction in internal carotid artery disease: review of cerebral perfusion studies. Stroke 2005; 36: 567-577
  • 9 Howard R, Trend P, Russell RW. Clinical features of ischemia in cerebral arterial border zones after periods of reduced cerebral blood flow. Arch Neurol 1987; 44: 934-940
  • 10 Brierley JB, Excell BJ. The effects of profound systemic hypotension upon the brain of M. rhesus: physiological and pathological observations.. Brain 1966; 89: 269-298
  • 11 Bogousslavsky J, Regli F. Unilateral watershed cerebral infarcts. Neurology 1986; 36: 373-377
  • 12 Bladin CF, Chambers BR. Clinical features, pathogenesis, and computed tomographic characteristics of internal watershed infarction. Stroke 1993; 24: 1925-1932
  • 13 Masuda J, Yutani C, Ogata J et al. Atheromatous embolism in the brain: a clinicopathologic analysis of 15 autopsy cases. Neurology 1994; 44: 1231-1237
  • 14 Pollanen MS, Deck JHN. The mechanism of embolic watershed infarction: experimental studies. Can J Neurol Sci 1990; 17: 395-398
  • 15 Caplan LR, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol 1998; 55: 1475-1482
  • 16 van der Zwan A, Hillen B. Review of the variability of the territories of the major cerebral arteries. Stroke 1991; 22: 1078-1084
  • 17 van der Zwan A, Hillen B, Tulleken CA et al. A quantitative investigation of the variability of the major cerebral arterial territories. Stroke 1993; 24: 1951-1959
  • 18 Provenzale JM, Jahan R, Naidich TP et al. Assessment of the patient with hyperacute stroke: imaging and therapy. Radiology 2003; 229: 347-359
  • 19 Derdeyn CP, Khosla A, Videen TO et al. Severe hemodynamic impairment and border zone region infarction. Radiology 2001; 220: 195-201
  • 20 Yong SW, Bang OY, Lee PH et al. Internal and cortical border-zone infarction: clinical and diffusion-weighted imaging features. Stroke 2006; 37: 841-846
  • 21 Moriwaki H, Matsumoto M, Hashikawa K et al. Hemodynamic aspect of cerebral watershed infarction: assessment of perfusion reserve using iodine-123-iodoamphetamine SPECT. J Nucl Med 1997; 38: 1556-1562
  • 22 Krapf H, Widder B, Skalej M. Small rosarylike infarctions in the centrum ovale suggest hemodynamic failure. AJNR Am J Neuroradiol 1998; 19: 1479-1484
  • 23 Lee PH, Bang OY, Oh SH et al. Subcortical white matter infarcts: comparison of superficial perforating artery and internal border-zone infarcts using diffusion-weighted magnetic resonance imaging. Stroke 2003; 34: 2630-2635
  • 24 Bang OY, Lee PH, Heo KG et al. Specific DWI lesion patterns predict prognosis after acute ischaemic stroke within the MCA territory. J Neurol Neurosurg Psychiatry 2005; 76: 1222-1228
  • 25 Arakawa S, Minematsu K, Hirano T et al. Topographic distribution of misery perfusion in relation to internal and superficial borderzones. AJNR Am J Neuroradiol 2003; 24: 427-435
  • 26 Yamauchi H, Kudoh T, Kishibe Y et al. Selective neuronal damage and borderzone infarction in carotid artery occlusive disease: a 11C-flumazenil PET study. J Nucl Med 2005; 46: 1973-1979
  • 27 Belden JR, Caplan LR, Pessin MS et al. Mechanisms and clinical features of posterior border-zone infarcts. Neurology 1999; 53: 1312-1318
  • 28 Bartynski WS, Grabb BC, Zeigler Z et al. Watershed imaging features and clinical vascular injury in cyclosporin A neurotoxicity. J Comput Assist Tomogr 1997; 21: 872-880
  • 29 Sarazin M, Caumes E, Cohen A et al. Multiple microembolic borderzone brain infarctions and endomyocardial fibrosis in idiopathic hypereosinophilic syndrome and in Schistosomamansoni infestation. J Neurol Neurosurg Psychiatry 2004; 75: 305-307
  • 30 McMillan HJ, Johnston DL, Doja A. Watershed infarction due to acute hypereosinophilia. Neurology 2008; 70: 80-82
  • 31 Tatu L, Moulin T, Bogousslavsky J et al. Arterial territories of human brain: brainstem and cerebellum. Neurology 1996; 47: 1125-1135
  • 32 Duvernoy HM. The human brainstem and cerebellum: surface, structure, vascularization and three dimensional sectional anatomy with MRI. New York, NY: Springer; 1995
  • 33 Amarenco P, Kase CS, Rosengart A et al. Very small (border zone) cerebellar infarcts: distribution, causes, mechanisms and clinical features. Brain 1993; 116: 161-186
  • 34 Kruit MC, Launer LJ, Ferrari MD et al. Infarcts in the posterior circulation territory in migraine: the population-based MRI CAMERA study. Brain 2005; 128: 2068-2077
  • 35 Derdeyn CP, Videen TO, Yundt KD et al. Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 2002; 125: 595-607
  • 36 Vagal AS, Leach JL, Fernandez-Ulloa M et al. The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. AJNR Am J Neuroradiol 2009; 30: 876-884
  • 37 Powers WJ, Press GA, Grubb Jr RL et al. The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Ann Intern Med 1987; 106: 27-34
  • 38 Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 1991; 29: 231-240
  • 39 Chaves CJ, Silver B, Schlaug G et al. Diffusion- and perfusion-weighted MRI patterns in borderzone infarcts. Stroke 2000; 31: 1090-1096
  • 40 Ozgur HT, Kent Walsh T, Masaryk A et al. Correlation of cerebrovascular reserve as measured by acetazolamide-challenged SPECT with angiographic flow patterns and intra- or extracranial arterial stenosis. AJNR Am J Neuroradiol 2001; 22: 928-936
  • 41 Grubb Jr RL, Derdeyn CP, Fritsch SM et al. Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA 1998; 280: 1055-1060
  • 42 Yamauchi H, Fukuyama H, Nagahama Y et al. Significance of increased oxygen extraction fraction in five-year prognosis of major cerebral arterial occlusive diseases. J Nucl Med 1999; 40: 1992-1998
  • 43 Markus H. Transcranial Doppler detection of circulating cerebral emboli: a review. Stroke 1993; 24: 1246-1250
  • 44 Babikian VL, Hyde C, Pochay V et al. Clinical correlates of high-intensity transient signals detected on transcranial Doppler sonography in patients with cerebrovascular disease. Stroke 1994; 25: 1570-1573
  • 45 Hendrikse J, Petersen ET, van Laar PJ et al. Cerebral border zones between distal end branches of intracranial arteries: MR imaging. Radiology 2008; 246: 572-580