Synlett 2012; 23(9): 1339-1342
DOI: 10.1055/s-0031-1291043
letter
© Georg Thieme Verlag Stuttgart · New York

Addition of Purines to N-Boc Imines Generated in Situ in Water: Efficient Synthesis of Novel Acyclic Purine Azanucleosides

Hui Zhang
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China, Fax: +86(28)85257883   Email: xmzhang@cioc.ac.cn
b   Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Chun-Xia Lian
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China, Fax: +86(28)85257883   Email: xmzhang@cioc.ac.cn
,
Wei-Cheng Yuan
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China, Fax: +86(28)85257883   Email: xmzhang@cioc.ac.cn
,
Xiao-Mei Zhang*
a   Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China, Fax: +86(28)85257883   Email: xmzhang@cioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 19 January 2012

Accepted after revision: 26 March 2012

Publication Date:
14 May 2012 (online)


Abstract

A mild, efficient and highly regioselective addition of purine derivatives to N-Boc imines generated in situ in water was developed for the first time. A wide range of novel acyclic purine azanucleosides were synthesized in moderate to high yields through this transformation. This methodology was also appropriate for some other N-heterocycles.

Supporting Information

 
  • References

    • 1a Schaeffer HJ, Beauchamp L, De Miranda P, Elion GB, Bauer DJ, Collins P. Nature (London) 1978; 272: 583
    • 1b Elion GB. J. Virol. Med. Supp. 1993; 1: 2
    • 1c Elion GB, Furman PA, Fyfe JA, De Miranda P, Beauchamp L, Schaeffer H. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 5716
    • 1d Garg R, Gupta SP, Gao H, Babu MS, Debnath AK, Hansch C. Chem. Rev. 1999; 99: 3525
    • 1e De Clercq E. J. Clin. Virol. 2004; 30: 115
  • 2 Parker WB. Chem. Rev. 2009; 109: 2880
    • 3a Johnson AA, Ray AS, Hanes J, Suo Z, Colacino JM, Anderson KS, Johnson KA. J. Biol. Chem. 2001; 276: 40847
    • 3b De Clercq E. J. Antimicrob. Chemother. 2003; 51: 1079
    • 3c Jeha S, Gandhi V, Chan KW, McDonald L, Ramirez I, Madden R, Rytting M, Brandt M, Keating M, Plunkett W, Kantarjian H. Blood 2004; 103: 784

      For selected examples of amino acid or peptide derivatives of pyrimidines, see:
    • 4a Nishitani T, Iwasaki T, Mushika Y, Miyoshi M. J. Org. Chem. 1979; 44: 2019
    • 4b Kingsbury WD, Boehm JC, Mehta RJ, Grappel SF, Gilvarg C. J. Med. Chem. 1984; 27: 1447
    • 4c Nichifor M, Schacht H. Tetrahedron 1994; 50: 3747
    • 4d Lee JS, Jung YJ, Kim YJ. J. Pharm. Sci. 2001; 90: 1787

      For selected examples of aza-analogues of ganciclovir/penciclovir or acyclovir, see:
    • 5a Koszytkowska-Stawińska M, Sas W. Tetrahedron Lett. 2004; 45: 5437
    • 5b Koszytkowska-Stawińska M, Sas W, De Clercq E. Tetrahedron 2006; 62: 10325
    • 5c Koszytkowska-Stawińska M, Kaleta K, Sas W. Nucleosides, Nucleotides Nucleic Acids 2007; 26: 51
    • 5d Koszytkowska-Stawińska M, Kołaczkowska E, Adamkiewicz E, De Clercq E. Tetrahedron 2007; 63: 10587
    • 5e Koszytkowska-Stawińska M. Nucleosides, Nucleotides Nucleic Acids 2010; 29: 768
    • 5f Bergmeier SC, Fundy SL, Drach JC. Nucleosides, Nucleotides Nucleic Acids 1999; 18: 227

      For selected examples of other acyclic azanucleosides, see:
    • 6a Gawin R, De Clercq E, Naesens L, Koszytkowska-Stawińska M. Bioorg. Med. Chem. 2008; 16: 8379
    • 6b Koszytkowska-Stawińska M, De Clercq E, Balzarini J. Bioorg. Med. Chem. 2009; 17: 3756
    • 6c Zhou D, Lagoja IM, Aerschot V, Herdewijn P. Collect. Czech. Chem. Commun. 2006; 71: 15
    • 6d Guo HM, Wu YY, Niu HY, Wang DC, Qu GR. J. Org. Chem. 2010; 75: 3863
  • 7 Zhong MH, Robins MJ. J. Org. Chem. 2006; 71: 8901

    • For some recent examples, see:
    • 9a Sohtome Y, Tanaka S, Takada K, Yamaguchi T, Nagasawa K. Angew. Chem. Int. Ed. 2010; 49: 9254
    • 9b Zhang HL, Syed S, Barbas CF. Org. Lett. 2010; 12: 708
    • 9c Galzerano P, Agostino D, Bencivenni G, Sambri L, Bartoli G, Melchiorre P. Chem.–Eur. J. 2010; 16: 6069
    • 9d Abermil N, Masson G, Zhu JP. Adv. Synth. Catal. 2010; 352: 656
    • 9e Enders D, Goddertz DP, Beceno C, Raabe G. Adv. Synth. Catal. 2010; 352: 2863
    • 9f Gonzalez PB, Lopez R, Palomo C. J. Org. Chem. 2010; 75: 3920
    • 9g Zhang H, Chen MG, Lian CX, Yuan WC, Zhang XM. Synlett 2010; 1415
    • 9h Zhao DP, Yang DX, Wang YJ, Wang Y, Wang LQ, Mao LJ, Wang R. Chem. Sci. 2011; 2: 1918
    • 9i Mita T, Higuchi Y, Sato Y. Org. Lett. 2011; 13: 2354
    • 9j Dou XY, Shuai Q, He LN, Li CJ. Inorg. Chim. Acta 2011; 369: 284
    • 9k Jin Y, Song BA, Li XY, Bhadury PS, Wang ZC, Yang S. Chem. Cent. J. 2011; 5: 21
  • 10 General Procedure for Addition of Purines 1 with α-Amido Sulfones 2: N-Boc α-amido sulfone (0.2 mmol, 1.0 equiv), Na2CO3 (0.3 mmol, 1.5 equiv), and H2O (2 mL) were put in a 10-mL glass vial equipped with a small magnetic stirring bar. To the solution was added purine derivative (0.24 mmol, 1.2 equiv). After stirring for the stipulated time at r.t., the mixture was diluted with H2O (5 mL) and extracted with EtOAc (3 × 25 mL, for 3aa3ak, 3ca and 3cj) or CHCl3 (3 × 25 mL, for 3ba, 3da, 3ea, 3fa and 3ga). The organic layers were combined, dried over anhyd Na2SO4 and concentrated under reduced pressure. The residue was subjected to silica gel flash chromatography (EtOAc–hexanes, 1:5) to give the pure product
  • 11 tert-Butyl Cyclohexyl (2,6-Dichloro-9H-purin-9-yl)methylcarbamate (3aa): yield: 97%; white solid; mp 182.7–183.3 °C. 1H NMR (300 MHz, CDCl3): δ = 8.15 (s, 1 H), 8.83 (br, 1 H), 5.63–5.69 (m, 1 H), 2.33 (br, 1 H), 1.65–2.02 (m, 4 H), 1.37 (s, 9 H), 0.83–1.36 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 154.5, 152.6, 152.4, 151.8, 145.7, 131.3, 81.3, 69.4, 40.1, 29.4, 29.1, 28.1, 25.7, 25.2, 25.1. HRMS (ESI): m/z [M + Na]+ calcd for C17H23Cl2N5NaO2: 422.1121; found: 422.1138