Synthesis 2012; 44(10): 1515-1520
DOI: 10.1055/s-0031-1290965
special topic
© Georg Thieme Verlag Stuttgart · New York

Dehydrogenative Synthesis of C3-Azolylindoles via Copper-Promoted Annulative Direct Coupling of o-Alkynylanilines

Yoshiro Oda
Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan, Fax: +81(6)68797362   Email: k_hirano@chem.eng.osaka-u.ac.jp   Email: miura@chem.eng.osaka-u.ac.jp
,
Naoto Matsuyama
Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan, Fax: +81(6)68797362   Email: k_hirano@chem.eng.osaka-u.ac.jp   Email: miura@chem.eng.osaka-u.ac.jp
,
Koji Hirano*
Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan, Fax: +81(6)68797362   Email: k_hirano@chem.eng.osaka-u.ac.jp   Email: miura@chem.eng.osaka-u.ac.jp
,
Tetsuya Satoh
Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan, Fax: +81(6)68797362   Email: k_hirano@chem.eng.osaka-u.ac.jp   Email: miura@chem.eng.osaka-u.ac.jp
,
Masahiro Miura*
Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan, Fax: +81(6)68797362   Email: k_hirano@chem.eng.osaka-u.ac.jp   Email: miura@chem.eng.osaka-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 29.02.201

Accepted: 15 March 2012

Publication Date:
19 April 2012 (eFirst)

Abstract

A copper-promoted annulative direct coupling of o-alkynylaniline derivatives with 1,3,4-oxadiazoles for the synthesis of C3-azolylindoles has been developed. The copper-based system provides a new protocol for the dehydrogenative construction of indole­–oxadiazole conjugations from nonhalogenated and nonmetalated starting materials.

Supporting Information

 
  • References

    • Reviews:

    • 1a Hegedus LS. Angew. Chem., Int. Ed. Engl. 1988; 27: 1113
    • 1b Gribble GW. J. Chem. Soc., Perkin Trans. 1 2000; 1045
    • 1c Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 1d Hamphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2857
    • 1e Young IS, Thornton PD, Thompson A. Nat. Prod. Rep. 2010; 27: 1801

    • Selected examples:
    • 1f Garg NK, Sarpong R, Stoltz BM. J. Am. Chem. Soc. 2002; 124: 13179
    • 1g Ahaidar A, Fernández D, Danelón G, Cuevas C, Manzanares I, Albericio F, Joule JA, Álvarez M. J. Org. Chem. 2003; 68: 10020
    • 1h Mosquera A, Riveiros R, Sestelo JP, Sarandeses LA. Org. Lett. 2008; 10: 3745
    • 2a Stuart DR, Fagnou K. Science 2007; 316: 1172
    • 2b Stuart DR, Villemure E, Fagnou K. J. Am. Chem. Soc. 2007; 129: 12072
    • 2c Potavathri S, Pereira KC, Gorelsky SI, Pike A, LeBris AP, DeBoef B. J. Am. Chem. Soc. 2010; 132: 14676
    • 2d Campbell AN, Meyer EB, Stahl SS. Chem. Commun. 2011; 47: 10257
  • 3 He C.-Y, Min Q.-Q, Zhang X. Organometallics 2012; 31: 1335
    • 4a Gong X, Song G, Zhang H, Li X. Org. Lett. 2011; 7: 1766
    • 4b Wang Z, Li K, Zhao D, Lan J, You J. Angew. Chem. Int. Ed. 2011; 50: 5365
    • 4c Yamaguchi AD, Mandal D, Yamaguchi J, Itami K. Chem. Lett. 2011; 40: 555
    • 5a Yoshizumi T, Tsurugi H, Satoh T, Miura M. Tetrahedron Lett. 2008; 49: 1598
    • 5b Yoshizumi T, Satoh T, Hirano K, Matsuo D, Orita A, Otera J, Miura M. Tetrahedron Lett. 2009; 50: 3273
    • 5c Kawano T, Yoshizumi T, Hirano K, Satoh T, Miura M. Org. Lett. 2009; 11: 3072
    • 5d Kitahara M, Hirano K, Tsurugi H, Satoh T, Miura M. Chem.–Eur. J. 2010; 16: 1772
    • 5e Kawano T, Matsuyama N, Hirano K, Satoh T, Miura M. J. Org. Chem. 2010; 75: 1764
    • 5f Matsuyama N, Kitahara M, Hirano K, Satoh T, Miura M. Org. Lett. 2010; 12: 2358
    • 5g Kitahara M, Umeda N, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2011; 133: 2160
    • 5h Yao T, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2011; 50: 2990
    • 5i See also: Hirano K, Miura M. Synlett 2011; 294
    • 6a Kawano T, Hirano K, Satoh T, Miura M. J. Am. Chem. Soc. 2010; 132: 6900
    • 6b Miyasaka M, Hirano K, Satoh T, Kowalczyk R, Bolm C, Miura M. Org. Lett. 2011; 13: 359
    • 6c Matsuda N, Hirano K, Satoh T, Miura M. Org. Lett. 2011; 13: 2860
    • 6d Oda Y, Hirano K, Satoh T, Miura M. Org. Lett. 2011; 14: 664
    • Selected work on the copper-mediated direct C–H functionalization:

    • 7a Li Z, Li C.-J. J. Am. Chem. Soc. 2006; 128: 56
    • 7b Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 7c Do H.-Q, Daugulis O. J. Am. Chem. Soc. 2007; 129: 12404
    • 7d Ackermann L, Potukuchi HK, Landsberg D, Vicente R. Org. Lett. 2008; 10: 3081
    • 7e Ban I, Sudo T, Taniguchi T, Itami K. Org. Lett. 2008; 10: 3607
    • 7f Hamada T, Ye X, Stahl SS. J. Am. Chem. Soc. 2008; 130: 833
    • 7g Brasche G, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
    • 7h Ueda S, Nagasawa H. Angew. Chem. Int. Ed. 2008; 47: 6411
    • 7i Phipps RJ, Grimster NP, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172
    • 7j Yotphan S, Bergman RG, Ellman JA. Org. Lett. 2009; 11: 1511
    • 7k Phipps RJ, Gaunt MJ. Science 2009; 323: 1593
    • 7l Zhao D, Wang W, Yang F, Lan J, Yang L, Gao G, You J. Angew. Chem. Int. Ed. 2009; 48: 3296
    • 7m Besseliévre F, Piguel S. Angew. Chem. Int. Ed. 2009; 48: 9553
    • 7n Monguchi D, Fujiwara T, Furukawa H, Mori A. Org. Lett. 2009; 11: 1607
    • 7o Mousseau JJ, Bull JA, Charette AB. Angew. Chem. Int. Ed. 2010; 49: 1115
  • 8 Hachiya H, Hirano K, Satoh T, Miura M. Org. Lett. 2011; 13: 3076
    • For copper-mediated annulations of o-alkynylanilines, reviews:

    • 9a Patil NT, Yamamoto Y. Chem. Rev. 2008; 108: 3395
    • 9b Vicente R. Org. Biomol. Chem. 2011; 9: 6469

    • Selected publications:
    • 9c Hiroya K, Itoh S, Sakamoto T. J. Org. Chem. 2004; 69: 1126
    • 9d Swamy NK, Yazici A, Pyne SG. J. Org. Chem. 2010; 75: 3412
    • 9e Matsuda N, Hirano K, Satoh T, Miura M. J. Org. Chem. 2012; 77: 617
  • 10 In all cases, the product was detected in the free NH form
  • 11 The lower reactivity of 1e-2F can be attributed to a competitive coordination of the amide moiety to the copper center. A similar trend was observed in our related annulative amination of o-alkynylanilines, see ref. 9e
    • 12a Brand JP, Chevalley C, Waser J. Beilstein J. Org. Chem. 2011; 7: 565

    • See also:
    • 12b Gu Y, Wang X.-m. Tetrahedron Lett. 2009; 50: 763
    • 12c Brand JP, Charpentier J, Waser J. Angew. Chem. Int. Ed. 2009; 48: 9346
    • 13a When the present reaction was carried out under the inert atmosphere of N2, the simple annulation predominantly occurred to largely drop the yield of 3. Given the positive effect of atmospheric O2, an O2-promoted oxidation process of Cu(II) into Cu(III) might be involved prior to the reductive elimination
    • 13b Huffman LM, Stahl SS. J. Am. Chem. Soc. 2008; 130: 9196
    • 13c King AE, Brunold TC, Stahl SS. J. Am. Chem. Soc. 2009; 131: 5044
    • 13d King AE, Huffman LM, Casitas A, Costas M, Ribas X, Stahl SS. J. Am. Chem. Soc. 2010; 132: 12068
  • 14 The reaction of N-(2-fluorobenzoyl)-N-methyl-o-(hex-1-ynyl)aniline completely failed, and the starting material was recovered intact. Thus, the removal of the acyl group on nitrogen would not occur prior to the annulation
    • 15a Sagnes C, Fournet G, Joseph B. Synlett 2009; 433
    • 15b See also refs. 7d and 7i
    • 16a Ainsworth C. J. Am. Chem. Soc. 1955; 77: 1148
    • 16b Mukai T, Hirano K, Satoh T, Miura M. J. Org. Chem. 2009; 74: 6410
    • 16c See also ref. 6a