Synthesis 2012; 44(12): 1818-1824
DOI: 10.1055/s-0031-1290945
special topic
© Georg Thieme Verlag Stuttgart · New York

Tandem Nucleophilic Addition/Fragmentation of Vinylogous Acyl Nonaflates for the Synthesis of Functionalized Alkynes, with New Mechanistic Insight

Paratchata Batsomboon
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, Fax: +1(850)6448281   Email: gdudley@chem.fsu.edu
,
Brian A. Gold
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, Fax: +1(850)6448281   Email: gdudley@chem.fsu.edu
,
Igor V. Alabugin
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, Fax: +1(850)6448281   Email: gdudley@chem.fsu.edu
,
Gregory B. Dudley*
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, Fax: +1(850)6448281   Email: gdudley@chem.fsu.edu
› Author Affiliations
Further Information

Publication History

Received: 03 March 2012

Accepted: 07 March 2012

Publication Date:
04 May 2012 (online)


Abstract

Vinylogous acyl nonaflates, like the corresponding triflates, are subject to nucleophile-triggered fragmentation as part of a tandem process for generating functionalized alkynes. Advantages to the use of nonaflates in lieu of triflates include cost and stability. Computational analysis supports a postulated fragmentation mechanism involving a closed (cyclic) transition state with concerted extrusion of lithium sulfonate.

Supporting Information

Primary Data

 
  • References

  • 1 Ho T. Tandem Organic Reactions . Wiley-Interscience; New York: 1992
    • 2a Tietze LF, Beifuss U. Angew. Chem., Int. Ed. Engl. 1993; 32: 131
    • 2b Tietze LF. Chem. Rev. 1996; 96: 115
    • 2c Tietze LF, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
    • 3a Denmark SE, Thorarensen A. Chem. Rev. 1996; 96: 137
    • 3b Wasilke J.-C, Obrey SJ, Baker RT, Bazan GC. Chem. Rev. 2005; 105: 1001
    • 3c Li J, Lee D. Eur. J. Org. Chem. 2011; 4269
    • 4a Kamijo S, Dudley GB. J. Am. Chem. Soc. 2005; 127: 5028
    • 4b Kamijo S, Dudley GB. J. Am. Chem. Soc. 2006; 128: 6499
  • 5 Woods GF. J. Am. Chem. Soc. 1947; 69: 2549
  • 6 Stork G, Danheiser RL. J. Org. Chem. 1973; 38: 1775
    • 7a Eschenmoser A, Felix D, Ohloff G. Helv. Chim. Acta 1967; 50: 708
    • 7b Tanabe M, Crowe DF, Dehn RL. Tetrahedron Lett. 1967; 3943
    • 7c Tanabe M, Crowe DF, Dehn RL, Detre G. Tetrahedron Lett. 1967; 3739
    • 7d Felix D, Shreiber J, Ohloff G, Eschenmoser A. Helv. Chim. Acta 1971; 54: 2896
    • 8a Grob CA, Schiess PW. Angew. Chem., Int. Ed. Engl. 1967; 6: 1
    • 8b Weyerstahl P, Marschall H. Comprehensive Organic Synthesis . Fragmentation Reactions . In Vol. 6. Trost BM, Fleming I. Pergamon Press; Elmsford: 1991: 1041
    • 8c Prantz K, Mulzer J. Chem. Rev. 2010; 110: 3741
  • 9 Lepore SD, Mondal D. Tetrahedron 2007; 63: 5103
    • 10a Draghici C, Brewer M. J. Am. Chem. Soc. 2008; 130: 3766
    • 10b Draghici C, Huang Q, Brewer M. J. Org. Chem. 2009; 74: 8410
    • 10c Bayir A, Draghici C, Brewer M. J. Org. Chem. 2010; 75: 296
  • 11 Shimizu M, Ando R, Kuwajima I. J. Org. Chem. 1984; 49: 1230
  • 12 Coke JL, Williams HJ, Natarajan S. J. Org. Chem. 1977; 42: 2380
    • 13a Fleming I, Ramarao C. Org. Biomol. Chem. 2004; 2: 1504
    • 13b Fleming I, Ramarao C. Chem. Commun. 1999; 1113
  • 14 Brummond KM, Gesenberg KD, Kent JL, Kerekes AD. Tetrahedron Lett. 1998; 39: 8613
  • 15 Jones DM, Kamijo S, Dudley GB. Synlett 2006; 936
  • 16 Kamijo S, Dudley GB. Org. Lett. 2006; 8: 175
  • 17 Jones DM, Lisboa MP, Kamijo S, Dudley GB. J. Org. Chem. 2010; 75: 3260
  • 18 Kamijo S, Dudley GB. Tetrahedron Lett. 2006; 47: 5629
    • 19a Tummatorn J, Dudley GB. Org. Lett. 2011; 13: 1572
    • 19b Tummatorn J, Batsomboon P, Clark RJ, Alabugin IV, Dudley GB. J. Org. Chem. 2012; 77: 2093
  • 20 Tummatorn J, Dudley GB. J. Am. Chem. Soc. 2008; 130: 5050
  • 21 Tummatorn J, Dudley GB. Org. Lett. 2011; 13: 158
  • 22 Kolakowski RV, Manpadi M, Zhang Y, Emge TJ, Williams LJ. J. Am. Chem. Soc. 2009; 131: 12910
  • 23 Saget T, Cramer N. Angew. Chem. Int. Ed. 2010; 49: 8962
  • 24 Högermeier J, Reissig H.-U. Adv. Synth. Catal. 2009; 351: 2747
  • 25 Unpublished results. See also references 4a and 12
    • 26a Lyapkalo IM, Webel M, Reissig H.-U. Eur. J. Org. Chem. 2001; 4189
    • 26b Lyapkalo IM, Webel M, Reissig H.-U. Eur. J. Org. Chem. 2002; 1015
    • 26c Zhou YF, Huang NZ. Synth. Commun. 1982; 12: 795
  • 27 Lisboa MP, Hoang TT, Dudley GB. Org. Synth. 2011; 88: 353
    • 28a This computational analysis highlights key features of the alkynogenic fragmentation of vinyl triflates, but it also provides a potential energy surface for the reverse process – electrophilic alkyne cyclization, which has been only scarcely studied computationally
    • 28b For the first theoretical study of nucleophile-assisted electrophilic dig-cyclizations, see: Stepanov AA, Gornostaev LM, Vasilevsky SF, Arnold EV, Mamatyuk VI, Fadeev DS, Gold B, Alabugin IV. J. Org. Chem. 2011; 76: 8737
    • 28c For updated general rules on alkyne cyclizations, see: Gilmore K, Alabugin IV. Chem. Rev. 2011; 111: 6513
    • 28d See also: Alabugin IV, Gilmore K, Manoharan M. J. Am. Chem. Soc. 2011; 133: 12608
  • 29 Araldi GL, Reddy AP, Zhao Z, McKenna SD, Bao B. Patent WO2003/103604 A2, 2003 ; Chem. Abstr. 2004, 140, 42024