Synthesis 2012; 44(12): 1854-1862
DOI: 10.1055/s-0031-1290817
special topic
© Georg Thieme Verlag Stuttgart · New York

Tandem Dihydroxylation, Hemiketalization and Conjugate Addition Leading to a Singly Anomeric Spiroketal

Jason A. Davy
a  Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
,
Benoît Moreau
b  Boehringer Ingelheim (Canada) Ltd., Research and Development, 2100 rue Cunard, Laval, QC, H7S 2G5, Canada, Fax: +1(250)7217147   Email: wulff@uvic.ca
,
Jeremy E. Wulff*
a  Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada
› Author Affiliations
Further Information

Publication History

Received: 29 February 2012

Accepted: 13 March 2012

Publication Date:
25 April 2012 (eFirst)

Abstract

A novel, highly stereoselective tandem dihydroxylation, hemiketalization and conjugate addition reaction is reported that transforms a linear meso-functionalized bis-enone into a substituted singly anomeric spiroketal, effectively controlling six stereocenters in a single operation. As part of an effort to explore the thermodynamic consequences of establishing the singly anomeric spiroketal in this system, the assembly of a related fully anomeric spiroketal possessing an unusual ketal-spiroketal-ketal framework is demonstrated.

Supporting Information

 
  • References

  • 1 Perron F, Albizati KF. Chem. Rev. 1989; 89: 1617
  • 2 The convention in the literature is to refer to all spiroketals that have one or more non-anomeric rings as ‘non-anomeric spiroketals’. For the purposes of this discussion, we have chosen to refer to those spiroketals containing one non-anomeric ring and one anomeric ring as ‘singly anomeric’
  • 3 Deslongchamps P, Rowan DD, Pothier N, Sauvé T, Saunders JK. Can. J. Chem. 1981; 59: 1105
    • 4a Anderson EA, Gockel B In Science of Synthesis Knowledge Updates . Vol. 2011/3. Carreira EM, Drabowicz J, Marek I, Oestreich M, Schaumann E. Thieme; Stuttgart: 2010: 173
    • 4b Raju BR, Saikia AK. Molecules 2008; 13: 1942
    • For leading reviews, see:

    • 5a Favre S, Vogel P, Gerber-Lemaire S. Molecules 2008; 13: 2570
    • 5b Aho JE, Pihko PM, Rissa TK. Chem. Rev. 2005; 105: 4406
    • For selected examples, see:

    • 6a Takaoka LR, Buckmelter AJ, LaCruz TE, Rychnovsky SD. J. Am. Chem. Soc. 2005; 127: 528
    • 6b Potuzak JS, Moilanen SB, Tan DS. J. Am. Chem. Soc. 2005; 127: 13796
    • 6c LaCruz TE, Rychnovsky SD. Org. Lett. 2005; 7: 1873
    • 6d Wurst JM, Liu G, Tan DS. J. Am. Chem. Soc. 2011; 133: 7916
  • 7 Brant MG, Bromba CM, Wulff JE. J. Org. Chem. 2010; 75: 6312
  • 8 Davies KA, Wulff JE. Org. Lett. 2011; 13: 5552
    • 9a Potts BC. M, Faulkner DJ, Chan JA, Simolike GC, Offen P, Hemling ME, Francis TA. J. Am. Chem. Soc. 1991; 113: 6321
    • 9b Pika J, Faulkner DJ. Nat. Prod. Lett. 1995; 7: 291
    • 9c Salomon CE, Williams DH, Lobkovsky E, Clardy JC, Faulkner DJ. Org. Lett. 2002; 4: 1699
  • 10 For a discussion of the unusual mechanism of action for didemnaketal A, see: Fan X, Flentke GR, Rich DH. J. Am. Chem. Soc. 1998; 120: 8893
    • (11) For synthetic approaches to the didemnaketal spiroketal from other groups, see:

    • 11a Jia YX, Wu B, Li X, Ren SK, Tu YQ, Chan AS. C, Kitching W. Org. Lett. 2001; 3: 847
    • 11b Zhao XZ, Peng L, Tang M, Tu YQ, Gao SH. Tetrahedron Lett. 2005; 46: 6941
    • 11c Ito H, Inoue T, Iguchi K. Org. Lett. 2008; 10: 3873
    • 11d Fuwa H, Noji S, Sasaki M. Org. Lett. 2010; 12: 5354
  • 12 Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
    • 13a Wong Y.-S. Chem. Commun. 2002; 686
    • 13b Falomir E, Álvarez-Bercedo P, Carda M, Marco JA. Tetrahedron Lett. 2005; 46: 8407
    • 13c Baldwin JE, Adlington RM, Sham VW.-W, Marquez R, Bulger PG. Tetrahedron 2005; 61: 2353
    • 13d Álvarez-Bercedo P, Falomir E, Carda M, Marco JA. Tetrahedron 2006; 62: 9641
    • 13e Chandrasekhar S, Rambabu C, Shyamsunder T. Tetrahedron Lett. 2007; 48: 4683
    • 13f Peuchmaur M, Wong Y.-S. J. Org. Chem. 2007; 72: 5374
    • 13g Zhen Z.-B, Gao J, Wu Y. J. Org. Chem. 2008; 73: 7310
    • 13h Ramana CV, Srinivas B. J. Org. Chem. 2008; 73: 3915
    • 13i Peuchmaur M, Saïdani N, Botté C, Maréchal E, Vial H, Wong Y.-S. J. Med. Chem. 2008; 51: 4870
    • 13j Kamal A, Reddy PV, Prabhakar S, Balakrishna M. Tetrahedron: Asymmetry 2009; 20: 2861
    • 13k Malathong V, Rychnovsky SD. Org. Lett. 2009; 11: 4220
    • 13l Ramana CV, Pandey SK. Tetrahedron 2010; 66: 390
    • 13m Yadav JS, Rao KV. R, Ravindar K, Reddy BV. S. Synlett 2010; 51
    • 13n Yadav JS, Thrimurtulu N, Venkatesh M, Prasad AR. Synthesis 2010; 431
    • 13o Das B, Krishnaiah M, Sudhakar C. Bioorg. Med. Chem. Lett. 2010; 20: 2303
    • 13p Yadav JS, Rao YG, Chandrakanth D, Ravindar K, Reddy BV. S. Helv. Chim. Acta 2010; 93: 2426
    • 13q Harbindu A, Kumar P. Synthesis 2010; 1479
    • (14) In addition to the aculeatin syntheses in reference 13, a very few reactions are known where a hemiketalization step triggers a subsequent addition to an unsaturated electrophilic center (promoted by the assistance of either a strong base or a transition metal) in an exo-trig or exo-dig addition to form a spiroketal, see:

    • 14a Miyakoshi N, Aburano D, Mukai C. J. Org. Chem. 2005; 70: 6045
    • 14b Wang CW, Forsyth CJ. Org. Lett. 2006; 8: 2997
    • 14c Guérinot A, Serra-Muns A, Gnamm C, Bensoussan C, Reymond S, Cossy J. Org. Lett. 2010; 12: 1808
  • 15 Kato T, Kondo H, Nishino M, Tanaka M, Hata G, Miyake A. Bull. Chem. Soc. Jpn. 1980; 53: 2958
  • 16 White BH, Snapper ML. J. Am. Chem. Soc. 2003; 125: 14901
  • 17 Rizzo CJ, Dunlap NK, Smith AB. J. Org. Chem. 1987; 52: 5280
    • 18a Randall ML, Tallarico JA, Snapper ML. J. Am. Chem. Soc. 1995; 117: 9610
    • 18b Schrader TO, Snapper ML. Tetrahedron Lett. 2000; 41: 9685
    • 18c Schrader TO, Snapper ML. J. Am. Chem. Soc. 2002; 124: 10998
    • 18d Shizuka M, Snapper ML. Synthesis 2007; 2397
    • 18e Pandya BA, Snapper ML. J. Org. Chem. 2008; 73: 3754
  • 19 Tomooka K, Ezawa T, Inoue H, Uehara K, Igawa K. J. Am. Chem. Soc. 2011; 133: 1754
  • 20 We cannot completely rule out the possibility that double bond isomerization could occur under the thermal reaction conditions of the oxy-Cope rearrangement. However, a thermal cis-to-trans isomerization within the constrained ring system of 14 seems unlikely on thermodynamic grounds
  • 21 Lange GL, Hall T.-W. J. Org. Chem. 1974; 39: 3819
    • 22a Hammond GS, Saltiel J, Lamola AA, Turro NJ, Bradshaw JS, Cowan DO, Counsell RC, Vogt V, Dalton C. J. Am. Chem. Soc. 1964; 86: 3197
    • 22b Kropp PJ. Pure Appl. Chem. 1970; 24: 585
  • 23 Becker H, Sharpless KB. Angew. Chem., Int. Ed. Engl. 1996; 35: 448
  • 24 Production of 7a was accompanied by the generation of small quantities of other minor products whose presence complicated purification, thereby resulting in a modest isolated yield. It is possible that these minor products include the diastereomer 7b or one of the alternative diastereomeric products deriving from 6b. However, sufficient quantities of these species could not be obtained for characterization purposes
  • 25 Ito H, Kawabe C, Iguchi K. Heterocycles 2006; 67: 695
  • 26 B3LYP/6-31G*//PM3
  • 27 Ohkoshi M, Horino T, Yoshida M, Iyoda M. Chem. Commun. 2003; 2586