References and Notes
<A NAME="RD67711ST-1A">1a</A>
Tellitu I.
Serna S.
Herrero MT.
Moreno I.
Domínguez E.
SanMartin R.
J.
Org. Chem.
2007,
72:
1526
<A NAME="RD67711ST-1B">1b</A>
Serna S.
Tellitu I.
Domínguez E.
Moreno I.
SanMartin R.
Org.
Lett.
2005,
7:
3073
<A NAME="RD67711ST-2">2</A>
Tellitu I.
Urrejola A.
Serna S.
Moreno I.
Herrero MT.
Domínguez E.
SanMartin R.
Correa A.
Eur. J. Org. Chem.
2007,
437
<A NAME="RD67711ST-3">3</A>
Pardo LM.
Tellitu I.
Domínguez E.
Tetrahedron
2010,
66:
5811
<A NAME="RD67711ST-4">4</A>
Pardo LM.
Tellitu I.
Domínguez E.
Synthesis
2010,
971
<A NAME="RD67711ST-5A">5a</A>
Díaz L.
Bujons J.
Casas J.
Llebaria A.
Delgado A.
J. Med. Chem.
2010,
53:
5248
<A NAME="RD67711ST-5B">5b</A>
Asano N.
Nash RJ.
Molyneux RJ.
Fleet GWJ.
Tetrahedron:
Asymmetry
2000,
11:
1645
<A NAME="RD67711ST-5C">5c</A>
Sinnott ML.
Chem. Rev.
1990,
90:
1171
<A NAME="RD67711ST-6A">6a</A>
Platt FM.
Neises GR.
Reinkensmeier G.
Townsend MJ.
Perry VH.
Proia RL.
Winchester B.
Dwek RA.
Butters TD.
Science
1997,
276:
428
<A NAME="RD67711ST-6B">6b</A>
Nojima H.
Kimura I.
Chen F.-J.
Sugihara Y.
Haruno M.
Kato A.
Asano N.
J.
Nat. Prod.
1998,
61:
397
<A NAME="RD67711ST-7A">7a</A>
Goss PE.
Baker MA.
Carver JP.
Dennis JW.
Clin. Cancer Res.
1995,
1:
935
<A NAME="RD67711ST-7B">7b</A>
Pili R.
Chang J.
Partis RA.
Mueller RA.
Chrest FJ.
Passaniti A.
Cancer
Res.
1995,
55:
2920
<A NAME="RD67711ST-8A">8a</A>
De Clercq E.
Med. Res. Rev.
2000,
20:
323
<A NAME="RD67711ST-8B">8b</A>
Winkler DA.
Holan G.
J. Med. Chem.
1989,
32:
2084
For reviews on availability, synthesis,
and biological evaluation of polyhydroxylated indolizidines, see:
<A NAME="RD67711ST-9A">9a</A>
Gupta P.
Pal APJ.
Reddy YS.
Vankar YD.
Eur. J.
Org. Chem.
2011,
1166
<A NAME="RD67711ST-9B">9b</A>
El Nemr AE.
Tetrahedron
2000,
56:
8579
<A NAME="RD67711ST-9C">9c</A>
Burgess K.
Henderson I.
Tetrahedron
1992,
48:
4045
<A NAME="RD67711ST-9D">9d</A>
See also ref. 5b.
For some recent representative
examples, including references therein, see:
<A NAME="RD67711ST-10A">10a</A>
Kamal A.
Vangala SR.
Tetrahedron
2011,
67:
1341
<A NAME="RD67711ST-10B">10b</A>
Hu X.-G.
Bartholomew B.
Nash RJ.
Wilson FX.
Fleet GWJ.
Nakagawa S.
Kato A.
Jia Y.-M.
van Well R.
Yu C.-Y.
Org. Lett.
2010,
12:
2562
<A NAME="RD67711ST-10C">10c</A>
Izquierdo I.
Tamayo JA.
Rodríguez M.
Franco F.
Lo Re D.
Tetrahedron
2008,
64:
7910
<A NAME="RD67711ST-10D">10d</A>
Karanjule NS.
Markad SD.
Shinde VS.
Dhavale DD.
J.
Org. Chem.
2006,
71:
4667
<A NAME="RD67711ST-11A">11a</A>
Paolucci C.
Mattioli L.
J.
Org. Chem.
2001,
66:
4787 ; and
ref. 9 cited therein
<A NAME="RD67711ST-11B">11b</A>
Lindsay KB.
Pyne SG.
J.
Org. Chem.
2002,
67:
7774 ;
and ref. 3 cited therein
<A NAME="RD67711ST-11C">11c</A>
Carretero JC.
Arrayas RG.
J.
Org. Chem.
1998,
63:
2993 ;
and ref. 6 cited therein
<A NAME="RD67711ST-12A">12a</A>
Zambrano V.
Rassu G.
Roggio A.
Pinna L.
Zanardi F.
Curti C.
Casiraghi G.
Battistini L.
Org.
Biomol. Chem.
2010,
8:
1725
<A NAME="RD67711ST-12B">12b</A>
Tian Y.-S.
Joo J.-E.
Kong B.-S.
Pham V.-T.
Lee K.-Y.
Ham W.-H.
J. Org. Chem.
2009,
74:
3962
<A NAME="RD67711ST-12C">12c</A>
Alam MA.
Kumar A.
Vankar YD.
Eur. J. Org. Chem.
2008,
4972
<A NAME="RD67711ST-12D">12d</A>
Shi G.-F.
Li J.-Q.
Jiang
X.-P.
Cheng Y.
Tetrahedron
2008,
64:
5005
<A NAME="RD67711ST-12E">12e</A>
Abrams JN.
Babu RS.
Guo H.
Le D.
Le J.
Osbourn JM.
O’Doherty GA.
J. Org. Chem.
2008,
73:
1935
<A NAME="RD67711ST-12F">12f</A>
Guo H.
O’Doherty GA.
Tetrahedron
2008,
64:
304
<A NAME="RD67711ST-12G">12g</A>
Bi J.
Aggarwal VK.
Chem. Commun.
2008,
120
<A NAME="RD67711ST-12H">12h</A>
Ceccon J.
Greene AE.
Poisson J.-F.
Org.
Lett.
2006,
8:
4739
<A NAME="RD67711ST-12I">12i</A>
Michael JP.
Nat. Prod. Rep.
2008,
25:
139
<A NAME="RD67711ST-13">13</A>
The selection of the E/Z mixture of 3 was
made on the basis of economic reasons with respect to both expensive
isolated stereoisomers. Moreover, it was anticipated that an E/Z mixture
of (±)-6 should render the same
compound after the ring-closing-metathesis step. All these compounds
(4-6) were
prepared as E/Z isomers
and no effort to isolate them was attempted.
<A NAME="RD67711ST-14">14</A> For a useful review on the Sonogashira
reaction, see:
Chinchilla R.
Nájera C.
Chem. Rev.
2007,
107:
874
The putative syn stereochemistry
of (±)-6 was assumed, but not
confirmed, on the basis of some related reports:
<A NAME="RD67711ST-15A">15a</A>
Yun JM.
Sim TB.
Hahm HS.
Lee WK.
Ha
H.-J.
J. Org. Chem.
2003,
68:
7675
<A NAME="RD67711ST-15B">15b</A>
Kim BC.
Lee WK.
Tetrahedron
1996,
52:
12117 ; to the view of the undesired results in
its transformation into (±)-7,
in which the tetrahedral carbinol group becomes trigonal, no additional
effort to clarify the stereochemical relationships in (±)-6 or (±)-7 was
carried out.
<A NAME="RD67711ST-16">16</A>
Grubbs RH.
Trnka TM.
Ruthenium-Catalyzed
Olefin Metathesis, In Ruthenium in Organic
Synthesis
Murahashi S.
Wiley-VCH;
Weinheim:
2004.
p.153-177
<A NAME="RD67711ST-17">17</A>
Chowdhury S.
Roy S.
J. Org. Chem.
1997,
62:
199
The development of protecting-group-free
syntheses must be a mandatory impulse for all synthetic organic
chemists. See, for example:
<A NAME="RD67711ST-18A">18a</A>
Young IS.
Baran PS.
Nat.
Chem.
2009,
1:
193
<A NAME="RD67711ST-18B">18b</A>
Hoffmann RW.
Synthesis
2006,
3531
<A NAME="RD67711ST-18C">18c</A>
Baran PS.
Maimone TJ.
Richter JM.
Nature (London)
2007,
446:
404
<A NAME="RD67711ST-18D">18d</A>
Roulland E.
Angew.
Chem. Int. Ed.
2011,
50:
1226 ;
and references therein
<A NAME="RD67711ST-19">19</A> For a description of the combined
use of several dihydroxylation methods, see:
Reddy JS.
Rao BV.
J.
Org. Chem.
2007,
72:
2224
<A NAME="RD67711ST-20">20</A>
A combination of NOESY, selective
COSY, and HMBC experiments were carried out to establish the stereochemical relationships
in compounds (±)-12a,b and (±)-13a.
From these results, the relative stereochemistry in (±)-11a,b was inferred.
<A NAME="RD67711ST-21">21</A>
Representative
Procedure for the PIFA-Mediated Heterocyclization: Synthesis of(
rac
)-
N
-Allyl-5-(3-phenylacryloyl)pyrrolidin-2-one [(±)-10]
A
solution of alkynylamide 9 (885 mg, 3.7
mmol) in CF3CH2OH (30 mL) was stirred at 0 ˚C,
and a solution of PIFA (2.3 g, 5.5 mmol) in 25 mL of the same solvent
was added dropwise. The reaction mixture was stirred at that temperature
for 2 h. For the workup, aq Na2CO3 (20%,
30 mL) was added, and the mixture was extracted with CH2Cl2 (2 × 40
mL). The combined organic layers were washed with brine, dried over
Na2SO4, and the solvent evaporated. Purification
of the crude by flash chromatography (EtOAc) gave pyrrolidinone
as a chromatographically pure yellowish oil (74%). Following
the representative procedure, pyrrolidinone (±)-10 was obtained from 9 (74%)
and purified by flash chromatography (EtOAc) as a yellowish oil. ¹H
NMR (300 MHz, CDCl3): δ = 7.70 (d, J = 15.8 Hz,
1 H), 7.54-7.39 (m, 5 H), 6.76 (d, J = 15.8
Hz, 1 H), 5.75-5.62 (m, 1 H), 5.15-5.08 (m, 2
H), 4.53-4.41 (m, 2 H), 3.46-3.38 (m, 1 H), 2.48-2.33
(m, 3 H), 2.00-1.93 (m, 1 H) ppm. ¹³C NMR
(300 MHz, CDCl3): δ = 197.2, 175.2,
145.2, 133.9, 132.1, 131.2, 129.1, 128.6, 121.4, 118.8, 63.7, 44.5,
29.6, 21.4 ppm. IR: ν = 1692, 1609 (CO) cm-¹.
HRMS: m/z calcd for C16H17NO2˙H+:
256.1338; found: 256.1335.
Representative
Procedure for the L-Selectride Reductive Step: Synthesis of
rac
-(5
R
,1′
R
)-
N
-Allyl-5-(1-hydroxy-3-phenylallyl)pyrrolidin-2-one [(±)-11a]
A
solution of L-Selectride® (1.8 mL, 1.0 M in
THF) was added dropwise to a cold (-78 ˚C) solution
of pyrrolidinone (±)-10 (230 mg,
0.9 mmol) in 4.5 mL of the same solvent. After 30 min, the temperature
was raised to r.t. and 2 mL of an aq solution of NaOH (10%)
was added. The whole mixture was extracted with CH2Cl2 (3 × 10
mL), the combined organic layers were dried over Na2SO4,
and the solvent evaporated. Purification of the crude by flash chromatography
(EtOAc) gave pyrrolidinone (±)-11a as
a chromatographically pure yellowish oil (70%). ¹H
NMR (300 MHz, CDCl3): δ = 7.30-7.17
(m, 5 H), 6.59 (d, J = 15.9 Hz,
1 H), 6.10 (dd, J = 15.9,
6.0 Hz, 1 H), 5.72-5.65 (m, 1 H), 5.14 (d, J = 4.5 Hz,
1 H), 5.10 (s, 1 H), 4.39-4.25 (m, 2 H), 3.76-3.64
(m, 2 H), 2.88 (br s, 1 H), 2.36-1.98 (m, 4 H) ppm. ¹³C
NMR (300 MHz, CDCl3): δ = 175.9, 136.2,
132.8, 132.3, 128.7, 128.0, 127.5, 126.5, 117.8, 73.4, 61.6, 44.7, 30.2,
20.5 ppm. IR: ν = 3374, 1670 cm-¹.
HRMS: m/z calcd for C16H19NO2˙H+:
258.1494; found: 258.1507.
Representative
Procedure for the Dihydroxylation Step: Synthesis of
rac
-(6
S
,7
S
,8
S
,9
R
)-6,7,8-Trihydroxyhexahydroindolizidin-3-one [(±)-13a]
K2OsO4˙2H2O
(7 mg, 0.015 mmol) and N-methyl-morpholine-N-oxide (70 mg, 0.6 mmol) were sequentially added
to 2 mL of an acetone-H2O (1:1) solution of indolizidinone
(±)-12a (50 mg, 0.3 mmol). The
mixture was stirred at r.t. for 18 h, and then filtered through
Celite. The volatiles were eliminated, and the residue was column chromatographed
(EtOAc) to render trihydroxyindolizi-dinone (±)-13a as a colorless oil (93%). ¹H
NMR (300 MHz, MeOD): δ = 5.48 (d, J = 3.7 Hz,
1 H), 3.94-3.64 (m, 3 H), 2.49-2.29 (m, 2 H),
2.11-1.87 (m, 4 H) ppm. ¹³C
NMR (300 MHz, MeOD): δ = 177.5, 74.5, 68.2, 65.0,
57.2, 35.2, 32.5, 19.6 ppm. IR: ν = 3408, 1660
cm-¹. HRMS: m/z calcd
for C8H13NO4˙H+:
188.0923; found: 188.0915.