Abstract
The asymmetric nitro-Mannich reactions of nitroalkanes and in
situ generated N -Boc-imines were achieved
with a new type of thiourea-guanidine bifunctional organocatalyst.
The novel transformations exhibited good diastereoselectivities,
and the adducts bearing adjacent chiral centers were generally obtained
in moderate to high enantioselectivities (up to 94% ee).
This reaction provides a concise and alternative route converting
readily accessible and stable N -carbamate
amido sulfones into optically active 1,2-diamino compounds.
Key words
organocatalysis - nitro-Mannich reaction - thiourea-guanidine
catalyst - in situ generated imines
References and Notes
<A NAME="RW18611ST-1">1 </A> Review on α,β-diamino
compounds:
Viso A.
de la Pradilla RF.
Tortosa M.
Garcia A.
Flores A.
Chem. Rev.
2011,
111:
PR1 ; and references cited therein
<A NAME="RW18611ST-2">2 </A> For a review on the synthesis of α,β-diamino
compounds by using Mannich reaction strategies, see:
Arrayas RG.
Carretero JC.
Chem.
Soc. Rev.
2009,
38:
1940
<A NAME="RW18611ST-3A">3a </A>
Yamada K.
Harwood SJ.
Gröger H.
Shibasaki M.
Angew.
Chem. Int. Ed.
1999,
38:
3504
<A NAME="RW18611ST-3B">3b </A>
Yamada K.
Moll G.
Shibasaki M.
Synlett
2001,
980
<A NAME="RW18611ST-3C">3c </A>
Nishiwaki N.
Knudsen KR.
Gothelf KV.
Jørgensen KA.
Angew. Chem.
Int. Ed.
2001,
40:
2992
<A NAME="RW18611ST-3D">3d </A>
Knudsen KR.
Risgaard T.
Nishiwaki N.
Gothelf KV.
Jørgensen KA.
J. Am. Chem. Soc.
2001,
123:
5843
<A NAME="RW18611ST-3E">3e </A>
Anderson JC.
Howell GP.
Lawrence RM.
Wilson CS.
J.
Org. Chem.
2005,
70:
5665
<A NAME="RW18611ST-3F">3f </A>
Palomo C.
Oiarbide M.
Halder R.
Laso A.
López R.
Angew.
Chem. Int. Ed.
2006,
45:
117
<A NAME="RW18611ST-3G">3g </A>
Handa S.
Gnanadesikan V.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2007,
129:
4900
<A NAME="RW18611ST-3H">3h </A>
Trost BM.
Lupton DW.
Org.
Lett.
2007,
9:
2023
<A NAME="RW18611ST-3I">3i </A>
Chen ZH.
Morimoto H.
Matsunaga S.
Shibasaki M.
J. Am.
Chem. Soc.
2008,
130:
2170
<A NAME="RW18611ST-3J">3j </A>
Handa S.
Gnanadesikan V.
Matsunaga S.
Shibasaki M.
J. Am. Chem. Soc.
2010,
132:
4925
<A NAME="RW18611ST-3K">3k </A>
Anderson JC.
Stepney GJ.
Mills MR.
Horsfall LR.
Blake AJ.
Lewis W.
J.
Org. Chem.
2011,
76:
1961
<A NAME="RW18611ST-4A">4a </A>
Okino T.
Nakamura S.
Furukawa T.
Takemoto Y.
Org.
Lett.
2004,
6:
625
<A NAME="RW18611ST-4B">4b </A>
Nugent BM.
Yoder RA.
Johnston JN.
J. Am. Chem. Soc.
2004,
126:
3418
<A NAME="RW18611ST-4C">4c </A>
Xu X.
Furukawa T.
Okino T.
Miyabe H.
Takemoto Y.
Chem.
Eur. J.
2006,
12:
466
<A NAME="RW18611ST-4D">4d </A>
Fini F.
Sgarzani V.
Pettersen D.
Herrera RP.
Bernardi L.
Ricci A.
Angew. Chem. Int. Ed.
2005,
44:
7975
<A NAME="RW18611ST-4E">4e </A>
Yoon TP.
Jacobsen
EN.
Angew.
Chem. Int. Ed.
2005,
44:
466
<A NAME="RW18611ST-4F">4f </A>
Palomo C.
Oiarbide M.
Laso A.
López R.
J. Am. Chem. Soc.
2005,
127:
17622
<A NAME="RW18611ST-4G">4g </A>
Robak MT.
Trincado M.
Ellman JA.
J. Am. Chem. Soc.
2007,
129:
15110
<A NAME="RW18611ST-4H">4h </A>
Singh A.
Yoder RA.
Shen B.
Johnston JN.
J. Am. Chem. Soc.
2007,
129:
3466
<A NAME="RW18611ST-4I">4i </A>
Wang C.-J.
Dong X.-Q.
Zhang Z.-H.
Xue
Z.-Y.
Teng H.-L.
J.
Am. Chem. Soc.
2008,
130:
8606
<A NAME="RW18611ST-4J">4j </A>
Singh A.
Johnston JN.
J. Am. Chem. Soc.
2008,
130:
5866
<A NAME="RW18611ST-4K">4k </A>
Han B.
Liu Q.-P.
Li R.
Tian X.
Xiong X.-F.
Deng J.-G.
Chen Y.-C.
Chem.
Eur. J.
2008,
14:
8094
<A NAME="RW18611ST-4L">4l </A>
Uraguchi D.
Koshimoto K.
Ooi T.
J.
Am. Chem. Soc.
2008,
130:
10878
<A NAME="RW18611ST-4M">4m </A>
Puglisi A.
Raimondi L.
Benaglia M.
Bonsignore M.
Rossi S.
Tetrahedron
Lett.
2009,
50:
4340
<A NAME="RW18611ST-5A">5a </A>
Petrini M.
Chem. Rev.
2005,
105:
3949
<A NAME="RW18611ST-5B">5b </A>
Petrini M.
Torregiani T.
Synthesis
2007,
159
<A NAME="RW18611ST-6A">6a </A>
Fini F.
Bernardi L.
Herrera RP.
Petterson D.
Ricci A.
Sgarzani V.
Adv.
Synth. Catal.
2006,
348:
2043
<A NAME="RW18611ST-6B">6b </A>
Song J.
Shih HW.
Deng L.
Org.
Lett.
2007,
9:
603
<A NAME="RW18611ST-6C">6c </A>
Marianacci O.
Micheletti G.
Bernardi L.
Fini F.
Fochi M.
Petterson D.
Sgarzoni V.
Ricci A.
Chem. Eur. J.
2007,
13:
8338
<A NAME="RW18611ST-6D">6d </A>
Niess B.
Jørgensen KA.
Chem. Commun.
2007,
1620
<A NAME="RW18611ST-6E">6e </A>
Los S.
Dai P.
Schaus SE.
J.
Org. Chem.
2007,
72:
9998
<A NAME="RW18611ST-6F">6f </A>
Wang J.
Shi T.
Deng G.
Jiang H.
Liu H.
J. Org. Chem.
2007,
73:
8563
<A NAME="RW18611ST-6G">6g </A>
Gianelli C.
Sambri L.
Carlone A.
Bartoli G.
Melchiorre P.
Angew.
Chem. Int. Ed.
2008,
47:
8700
<A NAME="RW18611ST-6H">6h </A>
Zhang H.
Syed S.
Barbas CF.
Org.
Lett.
2010,
12:
708
<A NAME="RW18611ST-7A">7a </A>
Doyle AG.
Jacobsen EN.
Chem. Rev.
2007,
107:
5713
<A NAME="RW18611ST-7B">7b </A>
Connon SJ.
Chem. Commun.
2008,
2499
<A NAME="RW18611ST-7C">7c </A>
Takemoto Y.
Org.
Biomol. Chem.
2005,
3:
4299
<A NAME="RW18611ST-7D">7d </A>
Connon SJ.
Chem. Eur. J.
2006,
12:
5418
<A NAME="RW18611ST-8A">8a </A>
Sohtome Y.
Hashimoto Y.
Nagasawa K.
Eur. J. Org. Chem.
2006,
2894
<A NAME="RW18611ST-8B">8b </A>
Sohtome Y.
Takemura N.
Takada K.
Takagi R.
Iguchi T.
Nagasawa K.
Chem. Asian J.
2007,
2:
1150
<A NAME="RW18611ST-8C">8c </A>
Takada K.
Takemura N.
Cho K.
Sohtome Y.
Nagasawa K.
Tetrahedron
Lett.
2008,
49:
1623
<A NAME="RW18611ST-8D">8d </A>
Takada K.
Tanaka S.
Nagasawa K.
Synlett
2009,
1643
<A NAME="RW18611ST-8E">8e </A>
Takada K.
Nagasawa K.
Adv. Synth. Catal.
2009,
351:
345
<A NAME="RW18611ST-9">9 </A>
Typical Procedure
for the Asymmetric Nitro-Mannich Reaction for the Synthesis of Compound
4a
To a mixture of α-amido sulfone 3a (0.1 mmol), chiral catalyst (S ,S )-1d (0.005 mmol, 5 mol%), and K2 CO3 (0.4 mmol)
in toluene (1.0 mL) at 0 ˚C was added nitroalkane 2a (0.2 mmol) in one portion. The resulting
mixture was stirred at 0 ˚C for 2 h. Then, a sat.
aq NH4 Cl solution was added, and the organic layer was
extracted with EtOAc. The extracts were dried over MgSO4 ,
filtered, and concentrated in vacuo. Compound 4a was
obtained as a white solid in 76% yield after flash column
chromatography (PE-EtOAc = 50:1), and
the ee was determined to be 86% by HPLC on Chiralpak AD-H
column (15% 2-PrOH-n -hexane,
1 mL/min), λ = 220 nm, t
R (major) = 15.9
min, t
R minor) = 17.8 min;
mp 189-190 ˚C. ¹ H
NMR (500 MHz, CDCl3 ): δ = 7.33-7.41
(m, 3 H), 7.26-7.31 (m, 4 H), 7.12-7.25 (m, 3 H),
5.19-5.30 (m, 2 H), 4.99-5.10 (br s, 1 H), 3.25-3.35
(m, 1 H), 3.13-3.20 (dd, J = 3.5,
14.8 Hz, 1 H), 1.46 (s, 9 H) ppm. ¹³ C
NMR (125 MHz, CDCl3 ): δ = 155.0,
136.4, 135.5, 129.2, 129.0, 128.9, 128.8, 127.5, 127.0, 92.7, 80.8,
57.3, 36.2, 28.2 ppm. ESI-HRMS: m/z calcd
for C20 H24 N2 O4 + Na: 379.1634;
found: 379.1636.