Synlett, Table of Contents Synlett 2012; 23(12): 1765-1768DOI: 10.1055/s-0031-1289785 letter © Georg Thieme Verlag Stuttgart · New YorkDiastereoselectivity in Diels–Alder Cycloadditions of Erythrose Benzylidene-acetal 1,3-Butadienes with Maleimides Authors Author Affiliations Daniela A. L. Salgueiro Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal Vera C. M. Duarte Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal Cristina E. A. Sousa Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal Maria J. Alves* Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal António Gil Fortes Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract Maleimides were combined with d-erythrose benzylidene-acetal 1,3-butadienes to study the facial selectivity of the Diels–Alder cycloadditions. The selectivity was found to range from moderate to good. The reaction diastereotopicity can be reversed with the temperature. Simultaneous coordination of the diene, having a free hydroxy group, and maleimide to a chiral bimetallic Lewis acid catalyst (LACASA–DA reaction) occurs with complete diastereocontrol to give a single adduct, using an extra chiral inductor either (R)- or (S)-BINOL. Key words Key wordsmaleimides - d-erythrose benzylidene-acetal 1,3-butadiene - Diels–Alder cycloaddition - selectivity Full Text References References and Notes 1 Mukhopadhyay A, Ali SM, Husain M, Suryawanshi SN, Bhakuni DS. Tetrahedron Lett. 1989; 30: 1853 2 Alves MJ, Duarte VC. M, Faustino H, Gil Fortes A. Tetrahedron: Asymmetry 2010; 21: 1817 3a Jones DW. J. Chem. Soc., Chem. Commun. 1980; 739 3b Fisher MJ, Hehre WJ, Kahn SD, Overman LE. J. Am. Chem. Soc. 1988; 110: 4625 3c Trost BM, Lee DC. J. Org. Chem. 1989; 54: 2271 3d Macaulay JB, Fallis AG. J. Am. Chem. Soc. 1988; 110: 4074 3e Macaulay JB, Fallis AG. J. Am. Chem. Soc. 1990; 112: 1136 3f Tripathy R, Carrol PJ, Thornton ER. J. Am. Chem. Soc. 1990; 112: 6743 3g Tripathy R, Carrol PJ, Thornton ER. J. Am. Chem. Soc. 1991; 113: 7630 4 Analytical Data for Some Typical Compounds Compound 5a: [α]D 20 –92.4 (c 0.45, EtOAc). IR (Nujol): νmax = 3441, 1690, 1457 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.22–2.32 (1 H, m, H-7), 2.75–2.90 (2 H, m, H-7 and H-3a), 3.35 (1 H, tdd, J = 11.6, 5.8, 3.5 Hz, H-4), 3.60 (1 H, td, J = 11.2, 0.8 Hz, H-6′), 3.83 (1 H, br s, H-5′), 3.96 (1 H, dt, J = 15.0, 7.5 Hz, H-7a), 4.28 (1 H, t, J = 9.0 Hz, H-4′), 4.36 (1 H, ddd, J = 11.0, 5.1, 2.3 Hz, H-6′), 5.52 (1 H, s, H-2′), 6.02–6.13 (1 H, m, H-6), 6.17 (1 H, dt, J = 9.4, 3.2 Hz, H-5), 7.11–7.18 (2 H, m, Ph), 7.32–7.54 (8 H, m, Ph) ppm. 13C NMR (100 MHz, CDCl3): δ = 24.27 (C-7), 39.23 (C-3a), 40.41 (C-4), 41.43 (C-7a), 66.44 (C-5′), 71.89 (C-6′), 80.46 (C-4′), 101.10 (C-2′), 126.06 (C-H, Ph), 126.42 (C-H, Ph), 128.13 (C-6), 128.23 (C-H, Ph), 128.83 (C-H, Ph), 128.94 (C-H, Ph), 129.12 (C-H, Ph), 130.14 (C-5), 131.56 (Cq, Ph), 137.49 (Cq, Ph), 178.53 (C=O), 179.81 (C=O) ppm. ESI-HRMS: m/z calcd for C24H23NNaO5: 428.1467; found: 428.1468. Compound 6a: [α]D 20 –118.2 (c 0.45, EtOAc). IR (Nujol): νmax = 3442, 1690, 1411, 1072 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.17–2.31 (1 H, m, H-7), 2.64–2.76 (1 H, m, H-4), 2.83 (1 H, ddd, J = 15.4, 7.0, 1.6 Hz, H-7), 3.27 (1 H, td, J = 8.0, 1.6 Hz, H-3a), 3.65 (1 H, t, J = 10.4 Hz, H-6′), 3.81 (2 H, dd, J = 9.0, 5.5 Hz, H-7a and H-5′), 4.27 (1 H, dd, J = 10.8, 5.1 Hz, H-6′), 4.44 (1 H, t, J = 9.6 Hz, H-4′), 5.64 (1 H, s, H-2′), 6.02 (1 H, ddt, J = 12.9, 6.5, 3.3 Hz, H-6), 6.41 (1 H, dt, J = 9.4, 3.5 Hz, H-5), 7.19–7.22 (2 H, m, Ph), 7.35–7.40 (4 H, m, Ph), 7.43–7.47 (2 H, m, Ph), 7.50–7.52 (2 H, m, Ph) ppm. 13C NMR (100 MHz, CDCl3): δ = 25.00 (C-7), 39.50 (C-3a), 40.09 (C-7a), 41.32 (C-4), 68.05 (C-5′), 71.24 (C-6′), 79.47 (C-4′), 100.79 (C-2′), 126.08 (C-H, Ph), 126.54 (C-H, Ph), 127.54 (C-6), 128.19 (C-H, Ph), 128.60 (C-H, Ph), 128.85 (C-H, Ph), 129.08 (Cq, Ph), 130.62 (C-5), 131.89 (Cq, Ph), 137.70 (Cq, Ph), 177.21 (C=O), 179.05 (C=O) ppm. ESI-HRMS: m/z calcd for C24H23NNaO5: 428.1473; found: 428.1468 5 Compound 5a: H-5: 6.40 (dt, J = 3.2, 9.2 Hz); H-2′: 5.64 (s). Compound 5b: H-5: 6.38 (dt, J = 3.6, 9.2 Hz); H-2′: 5.66 (s). Compound 5c: H-5: 6.34 (dt, J = 3.6, 9.2 Hz); H-2′: 5.67 (s). Compound 5d: H-5: 6.28 (dt, J = 3.6, 9.2 Hz); H-2′: 5.67 (s). Compound 6a: H-5: 6.17 (dt, J = 3.2, 9.2 Hz); H-2′: 5.51 (s). Compound 6b: H-5: 6.12 (dt, J = 3.6, 9.6 Hz); H-2′: 5.54 (s). Compound 6c: H-5: 6.16 (br s),* H-2′: 5.42 (s). Compound 6d: H-5: 6.08 (br t, 2.0 Hz),* H-2′: 5.42 (s). * These signals coincide with H-6 6a Ding X, Ukaji Y, Fujinami S, Inomata K. Chem. Lett. 2003; 32: 582 6b Ukaji Y, Inomata K. Synlett 2003; 1075 7a Ward DE, Souweha MS. Org. Lett. 2005; 3533 7b Ward DE, Mohammad SA. Org. Lett. 2000; 3937 8 Preparation of Solution A A solution of diene 1 (0.05 g, 0.22 mmol) in dry toluene (1.0 mL) was added to a solution of Me2Zn (1.2 M) in toluene (178 μL, 0.22 mmol) at 0 °C and stirred for 5 min. Preparation of Solution B A solution of (S)-BINOL (0.061 g; 0.22 mmol) in dry toluene (1.0 mL) was added to a solution of MeMgBr (1.4 M in toluene–THF; 152 μL, 0.22 mmol) at 0 °C and stirred for 5 min. Solution A was added to solution B, the mixture diluted with dry toluene (1.8 mL) and stirred for 5 min. This mixture was refrigerated at –78 °C and a solution of maleimide (3; 0.02 g, 0.22 mmol) in dry toluene (1.5 mL) was then added. The temperature was allowed to rise gradually to r.t. The reaction was complete after 17 d and was quenched with an aq sat. solution of NaHCO3 (1 mL), filtered through a pad of Celite, and the Celite was washed with EtOAc (4 × 10 mL). The filtrates were combined and concentrated under reduced pressure to give a yellow oil that was submitted to ‘dry-flash’ chromatography using a mixture of PE (40–60)–Et2O. (S)-BINOL was recovered (0.035 g, 57%) from PE–Et2O (1:1), and the product was eluted with PE–Et2O (1:2.3; 0.024 g, 33%)