Klinische Neurophysiologie 2011; 42(03): 177-182
DOI: 10.1055/s-0031-1285855
Niels-A.-Lassen-Preis
Georg Thieme Verlag KG Stuttgart · New York

Netzwerkstörungen nach Schlaganfall: Neue Erkenntnisse aus der funktionellen Magnetresonanztomografie

Network Disorders after Stroke: New Aspects from Functional Magnetic Resonance Imaging
C. Grefkes
1   Klinik und Poliklinik für Neurologie, Uniklinik Köln, Köln und Max-Planck-Institut für Neurologische Forschung, Köln
› Author Affiliations
Further Information

Publication History

Publication Date:
31 August 2011 (online)

Zusammenfassung

Das sensomotorische System des Menschen besteht aus einem komplexen Netzwerk kortikaler und subkortikaler Areale, deren feines Zusammenspiel den physiologischen Ablauf einer motorischen Aktion ermöglicht. Die Balance in diesem Netzwerk kann durch eine Schlaganfall-Läsion empfindlich gestört werden. Mithilfe von bildgebenden Verfahren wie der Positronen-Emissionstomografie (PET) oder der funktionellen Magnetresonanztomografie (fMRT) können über Konnektivitätsanalysen Störungen der Netzwerkstruktur aufgedeckt werden. Hier zeigen Auswertungen mittels Dynamic Causal Modelling (DCM) ausgedehnte Störungen innerhalb und zwischen den Hemisphären von Schlaganfall-Patienten. Solche Störungen können mit nicht-invasiven Stimulationstechniken korrigiert werden und zu einer Verbesserung der motorischen Performanz der paretischen Hand führen. Aber auch pharmakologische Ansätze können genutzt werden, um die herabgesetzte Netzwerkeffizienz durch die Stimulation beispielsweise noradrenerger Mechanismen zu verbessern und somit motorische Fertigkeiten der paretischen Hand zu steigern. Ein Konnektivitätsansatz bei der Analyse von Bildgebungsdatenerlaubt demzufolge neue Einblicke in die Pathophysiologie von Ischämie-bedingten motorischen Störungen und kann dazu beitragen, hypothesengeleitete neue Ansätze zur Neurorehabilitation zu entwickeln.

Abstract

The sensorimotor system comprises a network of cortical and subcortical areas which interact by means of excitatory or inhibitory circuits finally leading to motor output. The balance within this network may be critically disturbed following stroke if the lesion either directly affects any of these areas or damages white matter fibres connecting critical regions. Such effects can be detected by means of functional neuroimaging techniques like positron emission tomography (PET) or functional magnetic resonance imaging (fMRI) and analyses of connectivity. Estimating effective connectivity by means of dynamic causal modelling (DCM) reveals that, after stroke, changes in both intra- and interhemispheric interactions among cortical regions constitute an important pathophysiological aspect of motor impairment in stroke patients. Such disturbances can be partially corrected by non-invasive brain stimulation approaches. Likewise, stimulating noradrenergic mechanisms may also induce a re-arrangement of the functional network architecture of the sensorimotor system, which might be useful in a rehabilitative setting with stroke patients. In summary, analyses of effective connectivity may further our understanding of the pathophysiology underlying motor symptoms after stroke, and may help to design hypothesis-driven treatment strategies to support recovery of motor function in patients.

 
  • Literatur

  • 1 Breakspear M, Terry JR, Friston KJ. Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Network 2003; 14: 703-732
  • 2 Kolominsky-Rabas PL, Weber M, Gefeller O et al. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke 2001; 32: 2735-2740
  • 3 Hughlings-Jackson J. A contribution to the comparative study of convulsions. Brain 1886; 9: 1-23
  • 4 Foerster O. The motor cortex in man in the light of hughling jackson’s doctrines. Brain 1936; 59: 135-159
  • 5 Penfield W, Rasmussen T. The Cerebral Cortex of Man. New York: Macmillan; 1952
  • 6 Fink GR, Frackowiak RS, Pietrzyk U et al. Multiple nonprimary motor areas in the human cortex. J Neurophysiol 1997; 77: 2164-2174
  • 7 Olesen J. Contralateral focal increase of cerebral blood flow in man during arm work. Brain 1971; 94: 635-646
  • 8 Raichle ME, Grubb Jr RL, Gado MH et al. Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man. Arch Neurol 1976; 33: 523-526
  • 9 Lassen NA, Roland PE, Larsen B et al. Mapping of human cerebral functions: a study of the regional cerebral blood flow pattern during rest, its reproducibility and the activations seen during basic sensory and motor functions. Acta Neurol Scand Suppl 1977; 64: 262-265
  • 10 Roland PE, Skinhøj E, Lassen NA et al. Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 1980; 43: 118-136
  • 11 Ogawa S, Lee TM, Kay AR et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990; 87: 9868-9872
  • 12 Logothetis NK, Pauls J, Augath M et al. Neurophysiological investigation of the basis of the fMRI signal. Nature 2001; 412: 150-157
  • 13 Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp. 1994; 2: 56-78
  • 14 Horwitz B, Rumsey JM, Donohue BC. Functional connectivity of the angular gyrus in normal reading and dyslexia. Proc Natl Acad Sci USA 1998; 95: 8939-8944
  • 15 Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007; 8: 700-711
  • 16 Kwakkel G, Kollen BJ, Wagenaar RC. Long term effects of intensity of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiatry 2002; 72: 473-479
  • 17 Gresham GE, Fitzpatrick TE, Wolf PA et al. Residual disability in survivors of stroke – the Framingham study. N Engl J Med 1975; 293: 954-956
  • 18 Carod-Artal J, Egido JA, Gonzalez JL et al. Quality of life among stroke survivors evaluated 1 year after stroke: experience of a stroke unit. Stroke 2000; 31: 2995-3000
  • 19 Chollet F, DiPiero V, Wise RJ et al. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 1991; 29: 63-71
  • 20 Weiller C, Chollet F, Friston KJ et al. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 1992; 31: 463-472
  • 21 Gerloff C, Bushara K, Sailer A et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 2006; 129: 791-808
  • 22 Ward NS, Brown MM, Thompson AJ et al. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003; 126: 2476-2496
  • 23 Ward NS, Newton JM, Swayne OB et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 2006; 129: 809-819
  • 24 Schaechter JD, Perdue KL, Wang R. Structural damage to the corticospinal tract correlates with bilateral sensorimotor cortex reorganization in stroke patients. Neuroimage 2008; 39: 1370-1382
  • 25 Rehme AK, Fink GR, von Cramon DY et al. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb Cortex 2011; 21: 756-768
  • 26 Marshall RS, Perera GM, Lazar RM et al. Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 2000; 31: 656-661
  • 27 Binkofski F, Seitz RJ. Modulation of the BOLD-response in early recovery from sensorimotor stroke. Neurology 2004; 63: 1223-1229
  • 28 Johansen-Berg H, Dawes H, Guy C et al. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 2002; 125: 2731-2742
  • 29 Fridman EA, Hanakawa T, Chung M et al. Reorganization of human premotor cortex after stroke recovery. Brain 2004; 127: 747-758
  • 30 Johansen-Berg H, Rushworth MF, Bogdanovic MD et al. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA 2002; 99: 14518-14523
  • 31 Lotze M, Markert J, Sauseng P et al. The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci 2006; 26: 6096-6102
  • 32 Nowak DA, Grefkes C, Dafotakis M et al. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Arch Neurol 2008; 65: 741-747
  • 33 Dafotakis M, Grefkes C, Eickhoff SB et al. Effects of rTMS on grip force control following subcortical stroke. Exp Neurol 2008; 211: 407-412
  • 34 Takeuchi N, Chuma T, Matsuo Y et al. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke 2005; 36: 2681-2686
  • 35 Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage 2003; 19: 1273-1302
  • 36 David O, Guillemain I, Saillet S et al. Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol 2008; 6: 2683-2697
  • 37 Grefkes C, Nowak DA, Eickhoff SB et al. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 2008; 63: 236-246
  • 38 van Meer MP, van der Marel K, Wang K et al. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci 2010; 30: 3964-3972
  • 39 Carter AR, Astafiev SV, Lang CE et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 2010; 67: 365-375
  • 40 Wang L, Yu C, Chen H et al. Dynamic functional reorganization of the motor execution network after stroke. Brain 2010; 133: 1224-1238
  • 41 Murase N, Duque J, Mazzocchio R et al. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 2004; 55: 400-409
  • 42 Duque J, Hummel F, Celnik P et al. Transcallosal inhibition in chronic subcortical stroke. Neuroimage 2005; 28: 940-946
  • 43 Rehme AK, Eickhoff SB, Wang LE et al. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 2011; 55: 1147-1158
  • 44 Tombari D, Loubinoux I, Pariente J et al. A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients. Neuroimage 2004; 23: 827-839
  • 45 Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985; 1: 1106-1107
  • 46 Rothwell J. Transcranial magnetic stimulation. Brain 1998; 121 (Pt 3) 397-398
  • 47 Diekhoff S, Uludag K, Sparing R et al. Functional localization in the human brain: Gradient-Echo Spin-Echo, and arterial spin-labeling fMRI compared with neuronavigated TMS. Hum Brain Mapp 2011; 32: 341-357
  • 48 Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 1973; 232: 331-356
  • 49 Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron 2004; 44: 5-21
  • 50 Hummel FC, Cohen LG. Lancet Neurol 2006; 5: 708-712
  • 51 Nyffeler T, Wurtz P, Luscher HR et al. Extending lifetime of plastic changes in the human brain. Eur J Neurosci 2006; 24: 2961-2966
  • 52 Frey U, Morris RG Synaptic tagging and long-term potentiation. Nature 1997; 385: 533-536
  • 53 Kobayashi M, Hutchinson S, Theoret H et al. Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements. Neurology 2004; 62: 91-98
  • 54 Huang YZ, Edwards MJ, Rounis E et al. Theta burst stimulation of the human motor cortex. Neuron 2005; 45: 201-206
  • 55 Nowak DA, Grefkes C, Ameli M et al. Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand. Neurorehabil Neural Repair 2009; 23: 641-656
  • 56 Grefkes C, Fink GR. Functional Neuroimaging and Neuromodulation: Effects of Transranial Magnetic Stimulation on Cortical Networks in Healthy Subjects and Patients. Klin Neurophysiol 2009; 40: 239-247
  • 57 Conchou F, Loubinoux I, Castel-Lacanal E et al. Neural substrates of low-frequency repetitive transcranial magnetic stimulation during movement in healthy subjects and acute stroke patients. A PET study. Hum Brain Mapp 2009; 30: 2542-2557
  • 58 Grefkes C, Nowak DA, Wang LE et al. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. Neuroimage 2010; 50: 234-243
  • 59 Loubinoux I, Pariente J, Rascol O et al. Selective serotonin reuptake inhibitor paroxetine modulates motor behavior through practice. A double-blind, placebo-controlled, multi-dose study in healthy subjects. Neuropsychologia 2002; 40: 1815-1821
  • 60 Plewnia C, Hoppe J, Cohen LG et al. Improved motor skill acquisition after selective stimulation of central norepinephrine. Neurology 2004; 62: 2124-2126
  • 61 Floel A, Hummel F, Breitenstein C et al. Dopaminergic effects on encoding of a motor memory in chronic stroke. Neurology 2005; 65: 472-474
  • 62 Grefkes C, Wang LE, Eickhoff SB et al. Noradrenergic modulation of cortical networks engaged in visuomotor processing. Cereb Cortex 2010; 20: 783-797
  • 63 Wang LE et al. Noradrenergic stimulation and motor performance: Differential effects of reboxetine on movement kinematics and visuomotor abilities in healthy human subjects. Neuropsychologia 2009; 47: 1302-1312
  • 64 Butefisch CM, Davis BC, Sawaki L et al. Modulation of use-dependent plasticity by d-amphetamine. Ann Neurol 2002; 51: 59-68
  • 65 Meintzschel F, Ziemann U. Modification of practice-dependent plasticity in human motor cortex by neuromodulators. Cereb Cortex 2006; 16: 1106-1115
  • 66 Walker-Batson D, Smith P, Curtis S et al. Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. Stroke 1995; 26: 2254-2259
  • 67 Boyeson MG, Feeney DM. Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury. Pharmacol Biochem Behav 1990; 35: 497-501
  • 68 Wang LE, Fink GR, Diekhoff S et al. Noradrenergic enhancement improves motor network connectivity in stroke patients. Ann Neurol 2011; 69: 375-388
  • 69 Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 2011; 134 (5) 1264-1276