Zusammenfassung
Ziel: Ziel unserer Pilotstudie war es zu untersuchen, welche quantitativen und qualitativen,
auf eine frühe posttraumatische OA-Entstehung hinweisende, Veränderungen des Knieknorpels
und -gelenks 4 Jahre nach einer VKB-Ersatzplastik mittels der MRT erfasst werden können
und wie diese mit dem klinischen Outcome (CO) korrelieren. Material und Methoden: 9 Patienten wurden post-OP und 4 Jahre später bei 1,5 T untersucht. Mittels einer
hochauflösenden T 1-w-fs-FLASH-3D-Sequenz erfolgte eine quantitative Bestimmung des
Knorpelvolumens (cVol) und der mittleren Knorpeldicke (mTh) des retropatellaren, femoralen
und tibialen Gelenkknorpels. Anhand PD-w-fs und T 1-w-fs Sequenzen wurden qualitative
Veränderungen der gelenkbildenden Strukturen auf der Basis des WORMS-Score ermittelt.
Das CO wurde von einem erfahrenen Orthopäden in folgenden Tests erhoben: Lysholm-Score,
OAK-Score, Tegner-Aktivitäts-Score (TAS) und Arthrometer KT-1000-Test. Ergebnisse: Die mittlere Änderung des cVol betrug ca. –1,8 % (range: –5,9 %; + 0,7 %), die der
mTh ca. –0,8 % (range: –3,0 %; + 1,1 %). In keinem Kompartiment erwiesen sich die
Änderungen als signifikant (95 %-KI). 3 Patienten zeigten neue peripatellare Osteophyten,
akute traumaassoziierte Veränderungen waren insgesamt deutlich seltener. CO: Der Lysholm-
und OAK-Score betrug im Mittel 90 bzw. 86 Pkt. Der TAS betrug im Mittel 4,3 Pkt. Die
mittlere max. tibiale Translation lag bei 5,2 mm (gesunde Gegenseite 6,7 mm). Schlussfolgerung: 4 Jahre nach VKB-Ersatzplastik konnten mit der qMRT im Kniegelenk eine Tendenz hin
zu kleineren Werten jedoch keine signifikanten Veränderungen des cVol und der mTh
gemessen werden. Neue Osteophyten als morphologische Hinweise auf eine OA korrelierten
nicht mit dem überwiegend guten CO. Unserer durch die Kollektivgröße limitierten Studie
sollten weitere quantitative und semiquantitative, strukturelle MRT-Untersuchungen
des Knorpels und Knochens folgen um die frühzeitige diagnostische Erfassung einer
OA-Entstehung weiter voranzutreiben.
Abstract
Purpose: The purpose of this study was to analyze potential quantitative and qualitative changes
of the knee cartilage and joint indicative of early posttraumatic OA 4 years after
ACL-reconstruction and to correlate the MRI-findings with the clinical outcome (CO).
Materials and Methods: 1.5 T MRI-scans were performed on 9 patients post-op and 4 years later. Using a high-resolution
T 1-w-fs-FLASH-3D-sequence cartilage volume (cVol) and thickness (mTh) were quantified.
Using standard PD-w fs and T 1-w sequences qualitative changes of the joint structures
were analyzed based on the WORMS-score. CO was rated by an orthopaedic surgeon using
Lysholm-score, OAK-score, Tegner-activity-score (TAS), and Arthrometer KT-1000 testing.
Results: Mean changes of cVol were –1.8 % (range: –5.9 %; + 0.7 %) and of mTh –0.8 % (range:
–3.0 %; + 1.1 %). No significant change (95 %-CI) could be identified for any compartment.
Three patients developed new peripatellar ostheophytes, acute trauma related changes
mostly decreased. Mean outcome of Lysholm-score and OAK-score were 90 pts and 86 pts,
mean TAS was 4.3 pts. Average maximum tibial translation reached 5.2 mm comparing
to 6.7 mm on the healthy contralateral side. Conclusion: Despite a tendency towards decreased cVol and mTh 4 years after ACL-reconstruction
qMRI revealed no significant cartilage loss. Newly developing osteophytes did not
match with the observed good CO. This small pilot study motivates future quantitative
and qualitative-structural MRI-based assessment of articular cartilage and other joint
structures in order to improve diagnostic tools for the detection of early OA.
Key words
cartilage - quantitative MR-imaging - osteoarthritis
Literatur
1
Fu F H, Bennett C H, Ma C B et al.
Current Trends in Anterior Cruciate Ligament Reconstruction.
The American Journal of Sports Medicine.
2000;
28
124-130
2
Cotta H, Niethard F U.
Biomechanische und biochemische Grundlagen der Entstehung einer posttraumatischen
Arthrose.
Der Chirurg.
1979;
50
595-598
3
Wilder F V, Hall B J, Barrett J P et al.
History of acute knee injury and osteoarthritis of the knee: a prospective epidemiological
assessment. The Clearwater Osteoarthritis Study.
Osteoarthritis and cartilage.
2002;
10
611-616
4
Lohmander L S, Englund P M, Dahl L L et al.
The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis.
The American journal of sports medicine.
2007;
35
1756-1769
5
Batiste D L, Kirkley A, Laverty S et al.
Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection
model of osteoarthritis using MRI and micro-CT.
Osteoarthritis and cartilage.
2004;
12
986-996
6
Destatis S B.
Krankheitskosten. Fachserie 12.
2010;
Reihe 7.2
45
7
Altman R, Asch E, Bloch D et al.
Development of criteria for the classification and reporting of osteoarthritis. Classification
of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the
American Rheumatism Association.
Arthritis and rheumatism.
1986;
29
1039-1049
8
Peterfy C G, Guermazi A, Zaim S et al.
Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis.
Osteoarthritis and cartilage.
2004;
12
177-190
9
Eckstein F, Glaser C.
Measuring cartilage morphology with quantitative magnetic resonance imaging.
Seminars in musculoskeletal radiology.
2004;
8
329-353
10
Link T M, Steinbach L S, Ghosh S et al.
Osteoarthritis: MR imaging findings in different stages of disease and correlation
with clinical findings.
Radiology.
2003;
226
373-381
11
Eckstein F, Tieschky M, Faber S C et al.
Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging
study.
Radiology.
1998;
207
243-248
12
Horng A, Raya J, Zscharn M et al.
[Locoregional deformation pattern of the patellar cartilage after different loading
types – high-resolution 3D-MRI volumetry at 3T in-vivo].
Fortschr Röntgenstr.
2011;
183
432-440
13
Stammberger T, Eckstein F, Michaelis M et al.
Interobserver reproducibility of quantitative cartilage measurements: comparison of
B-spline snakes and manual segmentation.
Magnetic resonance imaging.
1999;
17
1033-1042
14
Lysholm J, Gillquist J.
Evaluation of knee ligament surgery results with special emphasis on use of a scoring
scale.
The American journal of sports medicine.
1982;
10
150-154
15
Müller W, Biedert R, Hefti F et al.
OAK knee evaluation. A new way to assess knee ligament injuries.
Clinical orthopaedics.
1988;
232
37-50
16
Tegner Y, Lysholm J.
Rating systems in the evaluation of knee ligament injuries.
Clinical orthopaedics and related research.
1985;
198
43-49
17
Werlich T, Brand H, Echtermeyer V et al.
[The knee arthrometer KT-1000: value of instrumental measurement in diagnosis of complex
anterior knee instability].
Aktuelle Traumatol.
1993;
23
43-49
18
McKinley T O, Rudert M J, Koos D C et al.
Incongruity versus instability in the etiology of posttraumatic arthritis.
Clin Orthop Relat Res.
2004;
423
44-51
19
Andreisek G, White L M, Sussman M S et al.
Quantitative MR imaging evaluation of the cartilage thickness and subchondral bone
area in patients with ACL-reconstructions 7 years after surgery.
Osteoarthritis Cartilage.
2009;
17
871-878
20
Peterfy C G, Dijke C F, Janzen D L et al.
Quantification of articular cartilage in the knee with pulsed saturation transfer
subtraction and fat-suppressed MR imaging: optimization and validation.
Radiology.
1994;
192
485-491
21
Eckstein van F, Westhoff J, Sittek H et al.
In vivo reproducibility of three-dimensional cartilage volume and thickness measurements
with MR imaging.
AJR American journal of roentgenology.
1998;
170
593-597
22
Stammberger T, Eckstein F, Englmeier K H et al.
Determination of 3D cartilage thickness data from MR imaging: computational method
and reproducibility in the living.
Magnetic resonance in medicine.
1999;
41
529-536
23
Eckstein F, Heudorfer L, Faber S C et al.
Long-term and resegmentation precision of quantitative cartilage MR imaging (qMRI).
Osteoarthritis and cartilage.
2002;
10
922-928
24
Hardya P A, Newmark R, Liu Y M et al.
The influence of the resolution and contrast on measuring the articular cartilage
volume in magnetic resonance images.
Magnetic resonance imaging.
2000;
18
965-972
25
Eckstein F, Ateshian G, Burgkart R et al.
Proposal for a nomenclature for magnetic resonance imaging based measures of articular
cartilage in osteoarthritis.
Osteoarthritis Cartilage.
2006;
14
974-983
26
Kellgren J H, Lawrence J S.
Radiological assessment of osteo-arthrosis.
Annals of the rheumatic diseases.
1957;
16
494-502
27
Altman R D, Hochberg M, Murphy W A et al.
Atlas of individual radiographic features in osteoarthritis.
Osteoarthritis and cartilage.
1995;
3 (Suppl A)
3-70
28 Bonakdarpour A. Diagnostic imaging of musculoskeletal diseases: a systematic approach.
1st ed. New York: Springer; 2009
29
Spindler K P, Schils J P, Bergfeld J A et al.
Prospective study of osseous, articular, and meniscal lesions in recent anterior cruciate
ligament tears by magnetic resonance imaging and arthroscopy.
The American journal of sports medicine.
1993;
21
551-557
30
Fowler P J.
Bone injuries associated with anterior cruciate ligament disruption.
Arthroscopy.
1994;
10
453-460
31
Faber K J, Dill J R, Amendola A et al.
Occult osteochondral lesions after anterior cruciate ligament rupture. Six-year magnetic
resonance imaging follow-up study.
The American journal of sports medicine.
1999;
27
489-494
32
Felson D T, McLaughlin S, Goggins J et al.
Bone marrow edema and its relation to progression of knee osteoarthritis.
Annals of internal medicine.
2003;
139
330-336
33
Zysk S P, Krüger A, Baur A et al.
Tripled semitendinosus anterior cruciate ligament reconstruction with Endobutton fixation:
a 2 – 3-year follow-up study of 35 patients.
Acta orthopaedica Scandinavica.
2000;
71
381-386
34
Drogset J O, Grøntvedt T, Robak O R et al.
A sixteen-year follow-up of three operative techniques for the treatment of acute
ruptures of the anterior cruciate ligament.
The Journal of bone and joint surgery.
2006;
88
944-952
35
Fink C, Hoser C, Benedetto K P et al.
Langzeitergebnisse nach konservativer oder operativer Therapie der vorderen Kreuzbandruptur.
Der Unfallchirurg.
1996;
99
964-969
36
Laxdal G, Kartus J, Ejerhed L et al.
Outcome and risk factors after anterior cruciate ligament reconstruction: a follow-up
study of 948 patients.
Arthroscopy.
2005;
21
958-964
37
Clancy W G, Ray J M, Zoltan D J.
Acute tears of the anterior cruciate ligament. Surgical versus conservative treatment.
The Journal of bone and joint surgery.
1988;
70
1483-1488
38
Passler J M, Babinski K, Schippinger G.
Failure of clinical methods in assessing graft integrity after anterior cruciate ligament
reconstruction: an arthroscopic evaluation.
Arthroscopy.
1999;
15
27-34
39
Eckstein F, Sittek H, Gavazzeni A et al.
Magnetic resonance chondro-crassometry (MR CCM): a method for accurate determination
of articular cartilage thickness?.
Magnetic resonance in medicine.
1996;
35
89-96
40
Hyhlik-Dürr A, Faber S, Burgkart R et al.
Precision of tibial cartilage morphometry with a coronal water-excitation MR sequence.
European radiology.
2000;
10
297-303
41
Miese F R, Ostendorf B, Wittsack H J et al.
[Cartilage quality in finger joints: delayed Gd(DTPA)(2)-enhanced MRI of the cartilage
(dGEMRIC) at 3T].
Fortschr Röntgenstr.
2010;
182
873-878
42
Wiener E, Settles M, Weirich G et al.
The influence of collagen network integrity on the accumulation of gadolinium-based
MR contrast agents in articular cartilage.
Fortschr Röntgenstr.
2011;
183
226-232
43
Raya J G, Arnoldi A P, Weber D L et al.
Ultra-high field diffusion tensor imaging of articular cartilage correlated with histology
and scanning electron microscopy.
MAGMA.
2011;
24 (4)
247-258
Andreas Paul Arnoldi
Department of Clinical Radiologie, LMU München
Marchioninistrasse 15
81377 München
Telefon: ++ 49/89/70 95 36 20
Fax: ++ 49/89/70 95 88 32
eMail: andreas.arnoldi@med.uni-muenchen.de