Planta Med 2012; 78(4): 326-333
DOI: 10.1055/s-0031-1280430
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Redox and Non-Redox Mechanism of In Vitro Cyclooxygenase Inhibition by Natural Quinones

Premysl Landa1 , Zsofia Kutil1 , 2 , Veronika Temml3 , Anna Vuorinen3 , Jan Malik4 , Marcela Dvorakova1 , Petr Marsik1 , Ladislav Kokoska2 , 4 , Marie Pribylova1 , Daniela Schuster3 , Tomas Vanek1
  • 1Laboratory of Plant Biotechnologies, Institute of Experimental Botany AS CR, v. v. i., Prague 6 – Lysolaje, Czech Republic
  • 2Department of Crop Sciences and Agroforestry, Institute of Tropics and Subtropics, Czech University of Life Sciences Prague, Prague 6 – Suchdol, Czech Republic
  • 3Computer-Aided Molecular Design Group (CAMD) and Center for Molecular Biosciences (CMBI), Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, Austria
  • 4Department of Zoology and Fisheries, The Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague 6 – Suchdol, Czech Republic
Further Information

Publication History

received April 4, 2011 revised Nov. 14, 2011

accepted Nov. 20, 2011

Publication Date:
15 December 2011 (online)

Abstract

In this study, ten anthra-, nine naphtho-, and five benzoquinone compounds of natural origin and five synthetic naphthoquinones were assessed, using an enzymatic in vitro assay, for their potential to inhibit cyclooxygenase-1 and -2 (COX-1 and COX-2), the key enzymes of the arachidonic acid cascade. IC50 values comparable with COX reference inhibitor indomethacin were recorded for several quinones (primin, alkannin, diospyrin, juglone, 7-methyljuglone, and shikonin). For some of the compounds, we suggest the redox potential of quinones as the mechanism responsible for in vitro COX inhibition because of the quantitative correlation with their pro-oxidant effect. Structure-relationship activity studies revealed that the substitutions at positions 2 and 5 play the key roles in the COX inhibitory and pro-oxidant actions of naphthoquinones. In contrast, the redox mechanism alone could not explain the activity of primin, embelin, alkannin, and diospyrin. For these four quinones, molecular modeling suggested similar binding modes as for conventional nonsteroidal anti-inflammatory drugs (NSAIDs).

Supporting Information

References

  • 1 Bruneton J. Pharmacognosy, phytochemistry, medicinal plants. Paris: Lavoisier Publishing; 1995
  • 2 Srinivas G, Babykutty S, Sathiadevan P P, Srinivas P. Molecular mechanism of emodin action: transition from laxative ingredient to an antitumor agent.  Med Res Rev. 2007;  27 591-608
  • 3 Stodulkova E, Kolarik M, Kresinova Z, Kuzma M, Sulc M, Man P, Novak P, Marsik P, Landa P, Olsovska J, Chudickova M, Pazoutova S, Cerny J, Bella J, Flieger M. Hydroxylated anthraquinones produced by Geosmithia species.  Folia Microbiol. 2009;  54 179-187
  • 4 Fidelix T S A, Soares B G D O, Trevisani V F M. Diacerein for osteoarthritis.  Cochrane Database Syst Rev. 2006;  DOI: 10.1002/14651858.CD005117
  • 5 Tanaka S, Tajima M, Tsukada M, Tabata M. A comparative study on anti-inflammatory activities of the enantiomers, shikonin and alkannin.  J Nat Prod. 1986;  49 466-469
  • 6 Mutabagani A, El-Mahdy S A M. A study of anti-inflammatory activity of Nigella sativa L. and thymoquinone in rats.  Saudi Pharm J. 1997;  5 110-113
  • 7 Marsik P, Kokoska L, Landa P, Nepovim A, Soudek P, Vanek T. In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1-and-2-catalyzed prostaglandin E-2 biosyntheses.  Planta Med. 2005;  71 739-742
  • 8 Herschman H R. Prostaglandin synthase 2.  Biochim Biophys Acta. 1996;  1299 125-140
  • 9 El-Dakhakhny M. Studies on the chemical constitution of the Egyptian Nigella sativa L. seeds. II: The essential oil.  Planta Med. 1963;  12 465-470
  • 10 Tietze L F, Guntner C, Gericke K M, Schuberth I, Bunkoczi G. A Diels-Alder reaction for the total synthesis of the novel antibiotic antitumor agent Mensacarcin.  Eur J Org Chem. 2005;  12 2459-2467
  • 11 Masquelon T, Hengartner U, Streith J. Coccidiostatic agents: synthesis of some analogs of (±)-frenolicin B.  Synthesis. 1995;  7 780-786
  • 12 Campaigne E, LeSuer W M. 3-Thenoic acid.  Org Synth. 1953;  33 94
  • 13 Sokolova M S, Beresnev V A, Kargina O I, Gornostaev L M. Acetylation of 1-amino-2-aryloxy-4-hydroxy-9,10-anthraquinones. Cyclization of N-acetyl derivatives of 1-amino-2-aryloxy-4-hydroxy-9,10-anthraquinones into 4-aryloxy-6-hydroxy-3H-naphtho[1,2,3-d,e]quinoline-2,7-diones.  Russ J Org Chem. 2008;  44 1631-1635
  • 14 Wurm G, Geres U. C-Methylierung von 1,4-Naphthochinonen.  Arch Pharm. 1984;  317 606-609
  • 15 Kelly T R, Fu Y, Sieglen J T, De Silva H. Synthesis of an orange anthrathiophene pigment isolated from a Japanese bryozoan.  Org Lett. 2000;  2 2351-2352
  • 16 Lin T S, Zhu L Y, Xu S P, Divo A A, Sartorelli A C. Synthesis and antimalarial activity of 2-aziridinyl- and 2,3-bis(aziridinyl)-1,4-naphtoquinonyl sulfonate and acylate derivatives.  J Med Chem. 1991;  34 1634-1639
  • 17 Reininger E A, Bauer R. Prostaglandin-H-synthase (PGHS)-1 and -2 microtiter assays for the testing of herbal drugs and in vitro inhibition of PGHS-isoenzymes by polyunsaturated fatty acids from Platycodi radix.  Phytomedicine. 2006;  13 164-169
  • 18 Sieuwerts A M, Klijn J G, Peters H A, Foekens J A. The MTT tetrazolium salt assay scrutinized: how to use this assay reliably to measure metabolic activity of cell cultures in vitro for the assessment of growth characteristics, IC50-values and cell survival.  Eur J Clin Chem Clin Biochem. 1995;  33 813-823
  • 19 Berman H M, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank.  Nat Struct Biol. 2003;  10 980
  • 20 Schuster D, Waltenberger B, Kirchmair J, Distinto S, Markt P, Stuppner H, Rollinger J M, Wolber G. Predicting cyclooxygenase activity by three-dimensional pharmacophoric profiling. Part I: model generation, validation and applicability in ethnopharmacology.  Mol Inf. 2010;  29 75-86
  • 21 Jones G, Willett P, Glen R C, Leach A R, Taylor R. Development and validation of a genetic algorithm for flexible docking.  J Mol Biol. 1997;  276 727-748
  • 22 Verdonk M L, Cole J C, Hartshorn M J, Murray C W, Taylor R D. Improved protein-ligand docking using GOLD.  Proteins. 2003;  52 609-623
  • 23 Sadowski J, Gasteiger J, Klebe G. Research article comparison of automatic three-dimensional model builders using 639 X-ray structures.  J Chem Inf Comput Sci. 1994;  34 1000-1008
  • 24 Roginsky V A, Bruchelt G, Bartuli O. Ubiquinone-0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone) as effective catalyzer of ascorbate and epinephrine oxidation and damager of neuroblastoma cells.  Biochem Pharmacol. 1998;  55 85-91
  • 25 Vecchio A J, Simmons D M, Malkowski M G. Structural basis of fatty acid substrate binding to cyclooxygenase-2.  J Biol Chem. 2010;  285 22152-22163
  • 26 Murakami K, Haneda M, Iwata S, Yoshino M. Effect of hydroxy substituent on the prooxidant action of naphthoquinone compounds.  Toxicol In Vitro. 2010;  24 905-909
  • 27 Klaus V, Hartmann T, Gambini J, Graf P, Stahl W, Hartwig A, Klotz L O. Naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes.  Arch Biochem Biophys. 2010;  496 93-100
  • 28 Overington J. An interview with John Overington, team leader, chemogenomics at the European Bioinformatics Institute Outstation of the European Molecular Biology Laboratory (EMBL-EBI). Interview by Wendy A. Warr.  J Comput Aided Mol Des. 2009;  23 195-198
  • 29 Loll P J, Picot D, Ekabo O, Garavito R M. Synthesis and use of iodinated nonsteroidal antiinflammatory drug analogs as crystallographic probes of the prostaglandin H2 synthase cyclooxygenase active site.  Biochemistry. 1996;  35 7330-7340
  • 30 Kurumbail R G, Stevens A M, Gierse J K, McDonald J J, Stegeman R A, Pak J Y, Gildehaus D, Miyashiro J M, Penning T D, Seibert K, Isakson P C, Stallings W C. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents.  Nature. 1996;  384 644-648
  • 31 Westfall B A, Russell R L, Auyong T K. Depressant agent from walnut hulls.  Science. 1961;  134 1617
  • 32 Majlathova L. Fütterungsversuch mit Alkannin an Mäusen.  Nahrung. 1971;  15 505-508
  • 33 Badary O A, Al-Shabanah O A, Nagi M N, Al-Bekairi A M, Elmazar M M A. Acute and subchronic toxicity of thymoquinone in mice.  Drug Dev Res. 1998;  44 56-61

Dr. Premysl Landa

Laboratory of Plant Biotechnologies
Institute of Experimental Botany AS CR, v. v. i.

Rozvojova 263

165 02 Prague 6 – Lysolaje

Czech Republic

Phone: +42 0 23 30 22 21 31

Fax: +42 02 33 02 24 79

Email: landa@ueb.cas.cz

>