Anästhesiol Intensivmed Notfallmed Schmerzther 2011; 46(5): 312-316
DOI: 10.1055/s-0031-1277972
Fachwissen
Anästhesiologie
© Georg Thieme Verlag Stuttgart · New York

Gerinnungsoptimierung mit ROTEM® – Pro

Coagulation Monitoring using ROTEM: ProDietmar Fries
Further Information

Publication History

Publication Date:
10 May 2011 (online)

Zusammenfassung

Das Gerinnungspotenzial eines kritisch kranken Patienten, unabhängig davon ob es sich um einen akut und massiv blutenden Patienten im Schockraum bzw. im OP oder um einen septischen Patienten im schweren Multiorganversagen auf der Intensivstation handelt, muss schnell und sicher erkannt werden, um eine individuelle und effiziente Therapie einleiten zu können – sei es eine aggressive prokoagulatorische Therapie mittels Einzelgerinnungsfaktorenkonzentraten oder eine potente Antikoagulation. Unter alleiniger Zuhilfenahme von sog. Standardgerinnungstests wie PT (INR), aPTT, Fibrinogen nach Clauss etc. ist dies nur eingeschränkt möglich. In einigen Fällen ist mithilfe dieser Parameter nicht einmal vorhersagbar, ob ein Patient aus hämostaseologischer Sichtweise blutungsgefährdet oder thromboemboliegfährdet ist. Die Thrombelastometrie (ROTEM®) bietet dem klinisch tätigen Anästhesisten und Intensivmediziner in der täglichen Routine die Möglichkeit, schnell und sicher das aktuelle Gerinnungspotenzial zu erfassen und therapeutische Schritte zeitnah kontrollieren zu können.

Abstract

Coagulation and haemostasis in critical ill patients, either in massively bleeding patients in the emergency room and the operating theatre (TIC = trauma induced coagulopathy) or in septic patients suffering from multiorgan failure (DIC = disseminated intravascular coagulopathy) have to be identified and monitored promptly to initiate and monitor an effective therapy – either aggressive therapy using coagulation factor concentrates and blood products or a keen anticoagulation. Under this circumstances, standard coagulation monitoring using PT (INR), aPTT and fibrinogen (Clauss method) is limited. In critical ill patients, these parameters are neither able to predict risk of bleeding nor the risk of thrombosis. New viscoelastic methods like the ROTEM® may help to improve coagulation monitoring and management even in the emergency situation or under critical care conditions.

Kernaussagen

  • Die Standardgerinnungstests können bei komplexen Krankheitsbildern weder das Blutungsrisiko noch das Thromboserisiko bei kritisch kranken Patienten anzeigen.

  • Die Thrombelastometrie (ROTEM) kann im Gegensatz dazu zwischen Thromboseneigung und Blutungsneigung einfach differenzieren.

  • Die Thrombelastometrie liefert im Gegensatz zum Gerinnungslabor innerhalb weniger Minuten Ergebnisse und ist als POC -Gerät im OP oder auf der Intensivstation einsetzbar.

  • Mithilfe von speziellen Tests können bei blutenden Patienten bzw. bei blutungsgefährdeten Patienten folgende Pathologien innerhalb weniger Minuten detektiert werden: Fibrinogenpolymerisationsstörungen, Thrombozytopenien, Hyperfibrinolysen, Faktorenmangelzustände und Heparinwirkung.

  • Die Methode ist einfach und schnell anwendbar. Mithilfe von sog. „Single-Use-Reagenzien“ werden zusätzliche Pipettierschritte, die zu Fehlern in der Durchführung des Tests führen können, vermieden.

  • Eine Hyperfibrinolyse ist derzeit in der klinischen Praxis ausschließlich mit der Methode der Thrombelastografie oder Thrombelastometrie nachweisbar.

  • Fibrinogenpolymerisationsstörungen werden im ROTEM besser erkannt als mit der Methode nach Clauss.

  • Eine Heparinwirkung kann mittels Heparinase-Zusatz ausgeschlossen werden.

  • Folgende Gerinnungspathologien können nicht detektiert werden: orale Antikoagulation, Thrombozytenfunktionsstörungen, Thrombozytenfunktionshemmer.

  • Es gibt derzeit in der Literatur Hinweise, dass durch eine Optimierung des Gerinnungsmanagements mithilfe von ROTEM Kosten eingespart werden können.

Weiteres Material zum Artikel

Literatur

  • 1 Dzik WH. Predicting hemorrhage using preoperative coagulation screening assays.  Curr Hematol Rep. 2004;  3 324-330
  • 2 Brohi K et al.. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis.  J Trauma. discussion 2008;  64
  • 3 Brohi K et al.. Acute traumatic coagulopathy.  J Trauma. 2003;  54 1127-1130
  • 4 Park MS et al.. Thromboelastography as a better indicator of hypercoagulable state after injury than prothrombin time or activated partial thromboplastin time.  J Trauma. discussion 2009;  67 275-266
  • 5 Hiippala ST, Myllyla GJ, Vahtera EM. Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates.  Anesth Analg. 1995;  81 360-365
  • 6 Hiippala ST. Dextran and hydroxyethyl starch interfere with fibrinogen assays.  Blood Coagul Fibrinolysis. 1995;  6 743-746
  • 7 Fenger-Eriksen C et al.. Fibrinogen estimates are influenced by methods of measurement and hemodilution with colloid plasma expanders.  Transfusion. 2010;  50 2571-2516
  • 8 Adam S, Karger R, Kretschmer V. Photo-Optical Methods Can Lead to Clinically Relevant Overestimation of Fibrinogen Concentration in Plasma Diluted With Hydroxyethyl Starch.  Clin Appl Thromb Hemost. 2010;  16 461-471
  • 9 Schochl H, Frietsch T, Pavelka M, Jambor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry.  J Trauma. 2009;  67 125-131
  • 10 Fries D et al.. [Coagulation management in trauma-related massive bleeding. - Recommendations of the Task Force for Coagulation (AGPG) of the Austrian Society of Anesthesiology, Resuscitation and Intensive Care Medicine (OGARI)].  Anasthesiol Intensivmed Notfallmed Schmerzther. 2010;  45 552-561
  • 11 Levrat A et al.. Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients.  Br J Anaesth. 2008;  100 792-797
  • 12 Geerts WH et al.. A comparison of low-dose heparin with low-molecular-weight heparin as prophylaxis against venous thromboembolism after major trauma.  N Engl J Med. 1996;  335 701-707
  • 13 Kudsk KA et al.. Silent deep vein thrombosis in immobilized multiple trauma patients.  Am J Surg. 1989;  158 515-519
  • 14 Hirsch DR, Ingenito EP, Goldhaber SZ. Prevalence of deep venous thrombosis among patients in medical intensive care.  JAMA. 1995;  274 335-337
  • 15 Misaki T et al.. Changes of the soluble fibrin monomer complex level during the perioperative period of hip replacement surgery.  J Orthop Sci. 2008;  13 419-424
  • 16 Tripodi A, Primignani M, Mannucci PM. Abnormalities of hemostasis and bleeding in chronic liver disease: the paradigm is challenged.  Intern Emerg Med. 5;  7-12
  • 17 Tripodi A et al.. The coagulopathy of cirrhosis assessed by thromboelastometry and its correlation with conventional coagulation parameters.  Thromb Res. 2009;  124 132-136
  • 18 Tripodi A et al.. Hypercoagulability in splenectomized thalassemic patients detected by whole-blood thromboelastometry, but not by thrombin generation in platelet-poor plasma.  Haematologica. 2009;  94 1520-1527
  • 19 Roberts LN, Patel RK, Arya R. Haemostasis and thrombosis in liver disease.  Br J Haematol. 2010;  148 507-521
  • 20 Daudel F et al.. Thromboelastometry for the assessment of coagulation abnormalities in early and established adult sepsis: a prospective cohort study.  Crit Care. 2009;  13
  • 21 Collins PW et al.. Global tests of haemostasis in critically ill patients with severe sepsis syndrome compared to controls.  Br J Haematol. 2006;  135 220-227
  • 22 Spalding GJ et al.. Cost reduction of perioperative coagulation management in cardiac surgery: value of "bedside" thrombelastography (ROTEM).  Eur J Cardiothorac Surg. 2007;  31 1052-1057
  • 23 Kang YG et al.. Intraoperative changes in blood coagulation and thrombelastographic monitoring in liver transplantation.  Anesth Analg. 1985;  64 888-896
  • 24 McNicol PL et al.. Patterns of coagulopathy during liver transplantation: experience with the first 75 cases using thrombelastography.  Anaesth Intensive Care. 1994;  22 659-665
  • 25 Harding SA, Mallett SV, Peachey TD, Cox DJ. Use of heparinase modified thrombelastography in liver transplantation.  Br J Anaesth. 1997;  78 175-179
  • 26 Tuman KJ, Spiess BD, McCarthy RJ, Ivankovich AD. Effects of progressive blood loss on coagulation as measured by thrombelastography.  Anesth Analg. 1987;  66 856-863
  • 27 Spiess BD et al.. Thromboelastography as an indicator of post-cardiopulmonary bypass coagulopathies.  J Clin Monit. 1987;  3 25-30
  • 28 Tuman KJ, Spiess BD, McCarthy RJ, Ivankovich AD. Comparison of viscoelastic measures of coagulation after cardiopulmonary bypass.  Anesth Analg. 1989;  69 69-75
  • 29 Essell JH et al.. Comparison of thromboelastography to bleeding time and standard coagulation tests in patients after cardiopulmonary bypass.  J Cardiothorac Vasc Anesth. 1993;  7 410-415
  • 30 Tuman KJ et al.. Evaluation of coagulation during cardiopulmonary bypass with a heparinase-modified thromboelastographic assay.  J Cardiothorac Vasc Anesth. 1994;  8 144-149
  • 31 Spiess BD, Gillies BS, Chandler W, Verrier E. Changes in transfusion therapy and reexploration rate after institution of a blood management program in cardiac surgical patients.  J Cardiothorac Vasc Anesth. 1995;  9 168-173
  • 32 Shih RL et al.. Prediction of bleeding diathesis in patients undergoing cardiopulmonary bypass during cardiac surgery: viscoelastic measures versus routine coagulation test.  Acta Anaesthesiol Sin. 1997;  35 133-139
  • 33 Cherng YG et al.. Preoperative evaluation and postoperative prediction of hemostatic function with thromboelastography in patients undergoing redo cardiac surgery.  Acta Anaesthesiol Sin. 1998;  36 179-186
  • 34 Shore-Lesserson L et al.. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery.  Anesth Analg. 1999;  88 312-319
  • 35 Royston D, von Kier S. Reduced haemostatic factor transfusion using heparinase-modified thrombelastography during cardiopulmonary bypass.  Br J Anaesth. 2001;  86 575-578
  • 36 Manikappa S, Mehta Y, Juneja R, Trehan N. Changes in transfusion therapy guided by thromboelastograph in cardiac surgery.  Ann Card Anaesth. 2001;  4 21-27
  • 37 Welsby IJ et al.. The kaolin-activated Thrombelastograph predicts bleeding after cardiac surgery.  J Cardiothorac Vasc Anesth. 2006;  20 531-535
  • 38 Anderson L. Comments on head to head TEG vs ROTEM.  Anaesthesia. author reply 2009;  64 1265-1266
  • 39 Westbrook AJ et al.. Protocol based on thromboelastograph (TEG) out-performs physician preference using laboratory coagulation tests to guide blood replacement during and after cardiac surgery: a pilot study.  Heart Lung Circ. 2009;  18 277-288
  • 40 Reinhofer M et al.. The value of rotation thromboelastometry to monitor disturbed perioperative haemostasis and bleeding risk in patients with cardiopulmonary bypass.  Blood Coagul Fibrinolysis. 2008;  19 212-219
  • 41 Johansson PI, Stissing T, Bochsen L, Ostrowski SR. Thrombelastography and tromboelastometry in assessing coagulopathy in trauma.  Scand J Trauma Resusc Emerg Med. 2009;  17 45
  • 42 Roullet S et al.. Rotation thromboelastometry detects thrombocytopenia and hypofibrinogenaemia during orthotopic liver transplantation.  Br J Anaesth. 2010;  104 422-428
  • 43 Trzebicki J et al.. The use of thromboelastometry in the assessment of hemostatsis during orthotopic liver transplantation reduces the demand for blood products.  Ann Transplant. 2010;  15 19-24
  • 44 Schochl H et al.. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate.  Crit Care. 2010;  14

A. univ. Prof. Dr. Dietmar Fries

Email: dietmar.fries@i-med.ac.at

>