ABSTRACT
The metabolic syndrome (or syndrome X) is a constellation of risk factors including
insulin resistance, hypertension, dyslipidemia, and central obesity that predispose
to the development of cardiovascular disease and type 2 diabetes in adult life. Insulin
resistance is believed to be a critical pathophysiological event early in the disease
process, impacting both skeletal muscle metabolic function and vascular responses.
Adverse changes in insulin sensitivity have been found to originate in utero; for
instance, prenatal events such as placental insufficiency/oxidative stress leading
to altered fetal growth trajectories are associated with increased rates of metabolic
syndrome in adult life. Such intrauterine insults result in reduced skeletal muscle
mass in conjunction with altered insulin signaling, decreased oxidative fibers, and
impaired mitochondrial function. These developmental disturbances set the stage for
development of muscle triglyceride accumulation and depressed insulin sensitivity
in childhood. Abnormalities of vascular structure and function arising from deprived
intrauterine conditions that are exacerbated by insulin resistance account for the
progression of hypertension from childhood to adulthood. Arterial changes initiated
in utero include reduced endothelial nitric oxide (NO) bioavailability, vascular smooth
muscle cell proliferation and inflammation, events leading to endothelial dysfunction,
and atherosclerosis that are present in those destined for metabolic syndrome. In
addition, the hypertensive phenotype that is a hallmark of metabolic syndrome may
also be traced to blunted kidney development and renin-angiotensin system activation
in growth-restricted offspring. The summative impact of these intrauterine programmed
changes in terms of influencing adult health and disease encompasses dietary and lifestyle
factors introduced postnatally. Establishing novel therapeutic interventions aimed
at preventing and/or reducing in utero–induced insulin resistance and vascular dysfunction
warrants investigation because the numbers of low birthweight babies continue to increase.
KEYWORDS
Fetus - programming - adult - muscle - insulin resistance - vessels - vascular dysfunction
- endothelial dysfunction
REFERENCES
1
Osmond C, Barker D J.
Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes,
and hypertension in adult men and women.
Environ Health Perspect.
2000;
108
(Suppl 3)
545-553
2
Ross M G, Beall M H.
Adult sequelae of intrauterine growth restriction.
Semin Perinatol.
2008;
32
(3)
213-218
3
Eriksson J G, Forsén T, Tuomilehto J, Winter P D, Osmond C, Barker D J.
Catch-up growth in childhood and death from coronary heart disease: longitudinal study.
BMJ.
1999;
318
(7181)
427-431
4
Arends N J, Boonstra V H, Duivenvoorden H J, Hofman P L, Cutfield W S, Hokken-Koelega A C.
Reduced insulin sensitivity and the presence of cardiovascular risk factors in short
prepubertal children born small for gestational age (SGA).
Clin Endocrinol (Oxf).
2005;
62
(1)
44-50
5
Barker D J, Osmond C, Forsén T J, Kajantie E, Eriksson J G.
Trajectories of growth among children who have coronary events as adults.
N Engl J Med.
2005;
353
(17)
1802-1809
6
Morton J S, Rueda-Clausen C F, Davidge S T.
Mechanisms of endothelium-dependent vasodilation in male and female, young and aged
offspring born growth restricted.
Am J Physiol Regul Integr Comp Physiol.
2010;
298
(4)
R930-R938
7
Barker D J.
The developmental origins of insulin resistance.
Horm Res.
2005;
64
(Suppl 3)
2-7
8
Stary H C.
Evolution and progression of atherosclerotic lesions in coronary arteries of children
and young adults.
Arteriosclerosis.
1989;
9
(1, Suppl)
I19-I32
9
Singhal A.
Endothelial dysfunction: role in obesity-related disorders and the early origins of
CVD.
Proc Nutr Soc.
2005;
64
(1)
15-22
10
Ness R B, Sibai B M.
Shared and disparate components of the pathophysiologies of fetal growth restriction
and preeclampsia.
Am J Obstet Gynecol.
2006;
195
(1)
40-49
11
Regnault T R, de Vrijer B, Galan H L, Wilkening R B, Battaglia F C, Meschia G.
Development and mechanisms of fetal hypoxia in severe fetal growth restriction.
Placenta.
2007;
28
(7)
714-723
12
Mayhew T M, Manwani R, Ohadike C, Wijesekara J, Baker P N.
The placenta in pre-eclampsia and intrauterine growth restriction: studies on exchange
surface areas, diffusion distances and villous membrane diffusive conductances.
Placenta.
2006;
28
(3)
233-238
13
Resnik R.
Intrauterine growth restriction.
Obstet Gynecol.
2002;
99
(3)
490-496
14
Marconi A M, Paolini C L, Stramare L et al..
Steady state maternal-fetal leucine enrichments in normal and intrauterine growth-restricted
pregnancies.
Pediatr Res.
1999;
46
(1)
114-119
15
Paolini C L, Marconi A M, Ronzoni S et al..
Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine
growth-restricted pregnancies.
J Clin Endocrinol Metab.
2001;
86
(11)
5427-5432
16
Thureen P J, Trembler K A, Meschia G, Makowski E L, Wilkening R B.
Placental glucose transport in heat-induced fetal growth retardation.
Am J Physiol.
1992;
263
(3 Pt 2)
R578-R585
17
Alvino G, Cozzi V, Radaelli T, Ortega H, Herrera E, Cetin I.
Maternal and fetal fatty acid profile in normal and intrauterine growth restriction
pregnancies with and without preeclampsia.
Pediatr Res.
2008;
64
(6)
615-620
18
Rodie V A, Caslake M J, Stewart F et al..
Fetal cord plasma lipoprotein status in uncomplicated human pregnancies and in pregnancies
complicated by pre-eclampsia and intrauterine growth restriction.
Atherosclerosis.
2004;
176
(1)
181-187
19
Lackman F, Capewell V, Gagnon R, Richardson B.
Fetal umbilical cord oxygen values and birth to placental weight ratio in relation
to size at birth.
Am J Obstet Gynecol.
2001;
185
(3)
674-682
20
Cheema R, Dubiel M, Gudmundsson S.
Signs of fetal brain sparing are not related to umbilical cord blood gases at birth.
Early Hum Dev.
2009;
85
(7)
467-470
21
Arbeille P.
Fetal arterial Doppler-IUGR and hypoxia.
Eur J Obstet Gynecol Reprod Biol.
1997;
75
(1)
51-53
22
Baschat A A.
Fetal responses to placental insufficiency: an update.
BJOG.
2004;
111
(10)
1031-1041
23
Rurak D W, Richardson B S, Patrick J E, Carmichael L, Homan J.
Blood flow and oxygen delivery to fetal organs and tissues during sustained hypoxemia.
Am J Physiol.
1990;
258
(5 Pt 2)
R1116-R1122
24
Verkauskiene R, Beltrand J, Claris O et al..
Impact of fetal growth restriction on body composition and hormonal status at birth
in infants of small and appropriate weight for gestational age.
Eur J Endocrinol.
2007;
157
(5)
605-612
25
Widdowson E M, Crabb D E, Milner R D.
Cellular development of some human organs before birth.
Arch Dis Child.
1972;
47
(254)
652-655
26
Mi J, Cheng H, Zhao X Y, Hou D Q, Chen F F, Zhang K L.
Developmental origin of metabolic syndrome: interaction of thinness at birth and overweight
during adult life in Chinese population.
Obes Rev.
2008;
9
(Suppl 1)
91-94
27
Marconi A M, Ronzoni S, Vailati S, Bozzetti P, Morabito A, Battaglia F C.
Neonatal morbidity and mortality in intrauterine growth restricted (IUGR) pregnancies
is predicated upon prenatal diagnosis of clinical severity.
Reprod Sci.
2009;
16
(4)
373-379
28
Ozanne S E, Constância M.
Mechanisms of disease: the developmental origins of disease and the role of the epigenotype.
Nat Clin Pract Endocrinol Metab.
2007;
3
(7)
539-546
29
Gluckman P D, Hanson M A, Cooper C, Thornburg K L.
Effect of in utero and early-life conditions on adult health and disease.
N Engl J Med.
2008;
359
(1)
61-73
30
Rogers M S, Murray H G, Wang C C et al..
Oxidative stress in the fetal lamb brain following intermittent umbilical cord occlusion:
a path analysis.
BJOG.
2001;
108
(12)
1283-1290
31
Baker J E.
Oxidative stress and adaptation of the infant heart to hypoxia and ischemia.
Antioxid Redox Signal.
2004;
6
(2)
423-429
32
Grattagliano I, Palmieri V O, Portincasa P, Moschetta A, Palasciano G.
Oxidative stress-induced risk factors associated with the metabolic syndrome: a unifying
hypothesis.
J Nutr Biochem.
2008;
19
(8)
491-504
33
Tintu A N, Noble F A, Rouwet E V.
Hypoxia disturbs fetal hemodynamics and growth.
Endothelium.
2007;
14
(6)
353-360
34
Fernandez-Twinn D S, Ozanne S E.
Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic
syndrome.
Physiol Behav.
2006;
88
(3)
234-243
35
Luo Z C, Fraser W D, Julien P et al..
Tracing the origins of “fetal origins” of adult diseases: programming by oxidative
stress?.
Med Hypotheses.
2006;
66
(1)
38-44
36
Jensen C B, Martin-Gronert M S, Storgaard H, Madsbad S, Vaag A, Ozanne S E.
Altered PI3-kinase/Akt signalling in skeletal muscle of young men with low birth weight.
PLoS ONE.
2008;
3
(11)
e3738
37
Singhal A, Fewtrell M, Cole T J, Lucas A.
Low nutrient intake and early growth for later insulin resistance in adolescents born
preterm.
Lancet.
2003;
361
(9363)
1089-1097
38
Phillips D I.
Insulin resistance as a programmed response to fetal undernutrition.
Diabetologia.
1996;
39
(9)
1119-1122
39
Jaquet D, Deghmoun S, Chevenne D, Collin D, Czernichow P, Lévy-Marchal C.
Dynamic change in adiposity from fetal to postnatal life is involved in the metabolic
syndrome associated with reduced fetal growth.
Diabetologia.
2005;
48
(5)
849-855
40
Eriksson J G, Forsén T, Tuomilehto J, Jaddoe V W, Osmond C, Barker D J.
Effects of size at birth and childhood growth on the insulin resistance syndrome in
elderly individuals.
Diabetologia.
2002;
45
(3)
342-348
41
Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C.
Insulin resistance early in adulthood in subjects born with intrauterine growth retardation.
J Clin Endocrinol Metab.
2000;
85
(4)
1401-1406
42
Hofman P L, Cutfield W S, Robinson E M et al..
Insulin resistance in short children with intrauterine growth retardation.
J Clin Endocrinol Metab.
1997;
82
(2)
402-406
43
Karlberg J P, Albertsson-Wikland K, Kwan E Y, Lam B C, Low L C.
The timing of early postnatal catch-up growth in normal, full-term infants born short
for gestational age.
Horm Res.
1997;
48
(Suppl 1)
17-24
44
Louey S, Cock M L, Harding R.
Long term consequences of low birthweight on postnatal growth, adiposity and brain
weight at maturity in sheep.
J Reprod Dev.
2005;
51
(1)
59-68
45
Cosmi E, Visentin S, Fanelli T, Mautone A J, Zanardo V.
Aortic intima media thickness in fetuses and children with intrauterine growth restriction.
Obstet Gynecol.
2009;
114
(5)
1109-1114
46
Contreras C, Sánchez A, Martínez P et al..
Insulin resistance in penile arteries from a rat model of metabolic syndrome.
Br J Pharmacol.
2010;
161
(2)
350-364
47
Cunningham J T, Rodgers J T, Arlow D H, Vazquez F, Mootha V K, Puigserver P.
mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional
complex.
Nature.
2007;
450
(7170)
736-740
48
Dressel U, Allen T L, Pippal J B, Rohde P R, Lau P, Muscat G E.
The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates
the expression of genes involved in lipid catabolism and energy uncoupling in skeletal
muscle cells.
Mol Endocrinol.
2003;
17
(12)
2477-2493
49
Schuler M, Ali F, Chambon C et al..
PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation
results in fiber-type switching, obesity, and type 2 diabetes.
Cell Metab.
2006;
4
(5)
407-414
50
Krämer D K, Ahlsén M, Norrbom J et al..
Human skeletal muscle fibre type variations correlate with PPAR alpha, PPAR delta
and PGC-1 alpha mRNA.
Acta Physiol (Oxf).
2006;
188
(3–4)
207-216
51
Loviscach M, Rehman N, Carter L et al..
Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal
muscle and adipose tissue: relation to insulin action.
Diabetologia.
2000;
43
(3)
304-311
52
Handel S E, Stickland N C.
The effects of low birthweight on the ultrastructural development of two myofibre
types in the pig.
J Anat.
1987;
150
129-143
53
Picard B, Lefaucheur L, Berri C, Duclos M J.
Muscle fibre ontogenesis in farm animal species.
Reprod Nutr Dev.
2002;
42
(5)
415-431
54
He J, Watkins S, Kelley D E.
Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle
fiber type in type 2 diabetes and obesity.
Diabetes.
2001;
50
(4)
817-823
55
Fahey A J, Brameld J M, Parr T, Buttery P J.
Ontogeny of factors associated with proliferation and differentiation of muscle in
the ovine fetus.
J Anim Sci.
2005;
83
(10)
2330-2338
56
McCoard S A, McNabb W C, Peterson S W, McCutcheon S N, Harris P M.
Muscle growth, cell number, type and morphometry in single and twin fetal lambs during
mid to late gestation.
Reprod Fertil Dev.
2000;
12
(5–6)
319-327
57
Tilley R E, McNeil C J, Ashworth C J, Page K R, Mcardle H J.
Altered muscle development and expression of the insulin-like growth factor system
in growth retarded fetal pigs.
Domest Anim Endocrinol.
2007;
32
(3)
167-177
58
Rees W D, Hay S M, Cruickshank M et al..
Maternal protein intake in the pregnant rat programs the insulin axis and body composition
in the offspring.
Metabolism.
2006;
55
(5)
642-649
59
Nyholm B, Qu Z, Kaal A et al..
Evidence of an increased number of type IIb muscle fibers in insulin-resistant first-degree
relatives of patients with NIDDM.
Diabetes.
1997;
46
(11)
1822-1828
60
Lagouge M, Argmann C, Gerhart-Hines Z et al..
Resveratrol improves mitochondrial function and protects against metabolic disease
by activating SIRT1 and PGC-1alpha.
Cell.
2006;
127
(6)
1109-1122
61
Malenfant P, Joanisse D R, Thériault R, Goodpaster B H, Kelley D E, Simoneau J A.
Fat content in individual muscle fibers of lean and obese subjects.
Int J Obes Relat Metab Disord.
2001;
25
(9)
1316-1321
62
Zhu M J, Ford S P, Means W J, Hess B W, Nathanielsz P W, Du M.
Maternal nutrient restriction affects properties of skeletal muscle in offspring.
J Physiol.
2006;
575
(Pt 1)
241-250
63
DeFronzo R A.
Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balanced overview.
Diabetologia.
1992;
35
(4)
389-397
64
Taniguchi C M, Emanuelli B, Kahn C R.
Critical nodes in signalling pathways: insights into insulin action.
Nat Rev Mol Cell Biol.
2006;
7
(2)
85-96
65
Fingar D C, Richardson C J, Tee A R, Cheatham L, Tsou C, Blenis J.
mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic
translation initiation factor 4E.
Mol Cell Biol.
2004;
24
(1)
200-216
66
Thorn S R, Regnault T R, Brown L D et al..
Intrauterine growth restriction increases fetal hepatic gluconeogenic capacity and
reduces messenger ribonucleic acid translation initiation and nutrient sensing in
fetal liver and skeletal muscle.
Endocrinology.
2009;
150
(7)
3021-3030
67
Muhlhausler B S, Duffield J A, Ozanne S E et al..
The transition from fetal growth restriction to accelerated postnatal growth: a potential
role for insulin signalling in skeletal muscle.
J Physiol.
2009;
587
(Pt 17)
4199-4211
68
Fahey A J, Brameld J M, Parr T, Buttery P J.
The effect of maternal undernutrition before muscle differentiation on the muscle
fiber development of the newborn lamb.
J Anim Sci.
2005;
83
(11)
2564-2571
69
Zhu M J, Ford S P, Nathanielsz P W, Du M.
Effect of maternal nutrient restriction in sheep on the development of fetal skeletal
muscle.
Biol Reprod.
2004;
71
(6)
1968-1973
70
Basu A, Lenka N, Mullick J, Avadhani N G.
Regulation of murine cytochrome oxidase Vb gene expression in different tissues and
during myogenesis. Role of a YY-1 factor-binding negative enhancer.
J Biol Chem.
1997;
272
(9)
5899-5908
71
Schieke S M, Phillips D, McCoy Jr J P et al..
The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption
and oxidative capacity.
J Biol Chem.
2006;
281
(37)
27643-27652
72
Selak M A, Storey B T, Peterside I, Simmons R A.
Impaired oxidative phosphorylation in skeletal muscle of intrauterine growth-retarded
rats.
Am J Physiol Endocrinol Metab.
2003;
285
(1)
E130-E137
73
Thamer C, Stumvoll M, Niess A et al..
Reduced skeletal muscle oxygen uptake and reduced beta-cell function: two early abnormalities
in normal glucose-tolerant offspring of patients with type 2 diabetes.
Diabetes Care.
2003;
26
(7)
2126-2132
74
Dressel U, Allen T L, Pippal J B, Rohde P R, Lau P, Muscat G E.
The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates
the expression of genes involved in lipid catabolism and energy uncoupling in skeletal
muscle cells.
Mol Endocrinol.
2003;
17
(12)
2477-2493
75
Lin J, Wu H, Tarr P T et al..
Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle
fibres.
Nature.
2002;
418
(6899)
797-801
76
Benton C R, Nickerson J G, Lally J et al..
Modest PGC-1alpha overexpression in muscle in vivo is sufficient to increase insulin
sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria.
J Biol Chem.
2008;
283
(7)
4228-4240
77
Mensink M, Hesselink M K, Russell A P, Schaart G, Sels J P, Schrauwen P.
Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 alpha
and PPAR beta/delta gene expression upon rosiglitazone treatment in obese patients
with type 2 diabetes mellitus.
Int J Obes (Lond).
2007;
31
(8)
1302-1310
78
Patti M E, Butte A J, Crunkhorn S et al..
Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance
and diabetes: Potential role of PGC1 and NRF1.
Proc Natl Acad Sci U S A.
2003;
100
(14)
8466-8471
79
Lane R H, MacLennan N K, Hsu J L, Janke S M, Pham T D.
Increased hepatic peroxisome proliferator-activated receptor-gamma coactivator-1 gene
expression in a rat model of intrauterine growth retardation and subsequent insulin
resistance.
Endocrinology.
2002;
143
(7)
2486-2490
80
Jucker B M, Yang D, Casey W M et al..
Selective PPARdelta agonist treatment increases skeletal muscle lipid metabolism without
altering mitochondrial energy coupling: an in vivo magnetic resonance spectroscopy
study.
Am J Physiol Endocrinol Metab.
2007;
293
(5)
E1256-E1264
81
Koopman R, Schaart G, Hesselink M K.
Optimisation of oil red O staining permits combination with immunofluorescence and
automated quantification of lipids.
Histochem Cell Biol.
2001;
116
(1)
63-68
82
Brunmair B, Staniek K, Dörig J et al..
Activation of PPAR-delta in isolated rat skeletal muscle switches fuel preference
from glucose to fatty acids.
Diabetologia.
2006;
49
(11)
2713-2722
83
Young M E, Patil S, Ying J et al..
Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated
receptor (alpha) in the adult rodent heart.
FASEB J.
2001;
15
(3)
833-845
84
Vettor R, Lombardi A M, Fabris R et al..
Lactate infusion in anesthetized rats produces insulin resistance in heart and skeletal
muscles.
Metabolism.
1997;
46
(6)
684-690
85
Sugden M C, Caton P W, Holness M J.
PPAR control: it's SIRTainly as easy as PGC.
J Endocrinol.
2010;
204
(2)
93-104
86
de Lange P, Moreno M, Silvestri E, Lombardi A, Goglia F, Lanni A.
Fuel economy in food-deprived skeletal muscle: signaling pathways and regulatory mechanisms.
FASEB J.
2007;
21
(13)
3431-3441
87
Gerhart-Hines Z, Rodgers J T, Bare O et al..
Metabolic control of muscle mitochondrial function and fatty acid oxidation through
SIRT1/PGC-1alpha.
EMBO J.
2007;
26
(7)
1913-1923
88
Rodgers J T, Lerin C, Haas W, Gygi S P, Spiegelman B M, Puigserver P.
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1.
Nature.
2005;
434
(7029)
113-118
89
Baur J A, Pearson K J, Price N L et al..
Resveratrol improves health and survival of mice on a high-calorie diet.
Nature.
2006;
444
(7117)
337-342
90
Wu X, Chang M S, Mitsialis S A, Kourembanas S.
Hypoxia regulates bone morphogenetic protein signaling through C-terminal-binding
protein 1.
Circ Res.
2006;
99
(3)
240-247
91
Zhang Q, Wang S Y, Nottke A C, Rocheleau J V, Piston D W, Goodman R H.
Redox sensor CtBP mediates hypoxia-induced tumor cell migration.
Proc Natl Acad Sci U S A.
2006;
103
(24)
9029-9033
92
Zhang Q, Wang S Y, Fleuriel C et al..
Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex.
Proc Natl Acad Sci U S A.
2007;
104
(3)
829-833
93
Ido Y.
Pyridine nucleotide redox abnormalities in diabetes.
Antioxid Redox Signal.
2007;
9
(7)
931-942
94
Regnault T R, Zhao L, Chiu J S, Gottheil S K, Foran A, Yee S.
Peroxisome Proliferator-activated receptor -β/δ, -γ agonists and resveratrol modulate
hypoxia induced changes in nuclear receptor activators of muscle oxidative metabolism.
PPAR Res.
2010;
2010
129173
95
Lane R H, Chandorkar A K, Flozak A S, Simmons R A.
Intrauterine growth retardation alters mitochondrial gene expression and function
in fetal and juvenile rat skeletal muscle.
Pediatr Res.
1998;
43
(5)
563-570
96
Brøns C, Jensen C B, Storgaard H et al..
Mitochondrial function in skeletal muscle is normal and unrelated to insulin action
in young men born with low birth weight.
J Clin Endocrinol Metab.
2008;
93
(10)
3885-3892
97
Szendroedi J, Schmid A I, Chmelik M et al..
Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2
diabetes.
PLoS Med.
2007;
4
(5)
e154
98
Kliewer S A, Xu H E, Lambert M H, Willson T M.
Peroxisome proliferator-activated receptors: from genes to physiology.
Recent Prog Horm Res.
2001;
56
239-263
99
Macdonald N, Holden P R, Roberts R A.
Addition of peroxisome proliferator-activated receptor alpha to guinea pig hepatocytes
confers increased responsiveness to peroxisome proliferators.
Cancer Res.
1999;
59
(19)
4776-4780
100
Bonen A, Holloway G P, Tandon N N et al..
Cardiac and skeletal muscle fatty acid transport and transporters and triacylglycerol
and fatty acid oxidation in lean and Zucker diabetic fatty rats.
Am J Physiol Regul Integr Comp Physiol.
2009;
297
(4)
R1202-R1212
101
Holloway G P, Benton C R, Mullen K L et al..
In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol
storage despite an increase in mitochondrial palmitate oxidation.
Am J Physiol Endocrinol Metab.
2009;
296
(4)
E738-E747
102
Holst D, Luquet S, Nogueira V, Kristiansen K, Leverve X, Grimaldi P A.
Nutritional regulation and role of peroxisome proliferator-activated receptor delta
in fatty acid catabolism in skeletal muscle.
Biochim Biophys Acta.
2003;
1633
(1)
43-50
103
Chevillotte E, Rieusset J, Roques M, Desage M, Vidal H.
The regulation of uncoupling protein-2 gene expression by omega-6 polyunsaturated
fatty acids in human skeletal muscle cells involves multiple pathways, including the
nuclear receptor peroxisome proliferator-activated receptor beta.
J Biol Chem.
2001;
276
(14)
10853-10860
104
Bezaire V, Spriet L L, Campbell S et al..
Constitutive UCP3 overexpression at physiological levels increases mouse skeletal
muscle capacity for fatty acid transport and oxidation.
FASEB J.
2005;
19
(8)
977-979
105
Brand M D, Pamplona R, Portero-Otín M et al..
Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria
from mice underexpressing or overexpressing uncoupling protein 3.
Biochem J.
2002;
368
(Pt 2)
597-603
106
Brandt J M, Djouadi F, Kelly D P.
Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I
gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha.
J Biol Chem.
1998;
273
(37)
23786-23792
107
Hulver M W, Dohm G L.
The molecular mechanism linking muscle fat accumulation to insulin resistance.
Proc Nutr Soc.
2004;
63
(2)
375-380
108
Luquet S, Lopez-Soriano J, Holst D et al..
Peroxisome proliferator-activated receptor delta controls muscle development and oxidative
capability.
FASEB J.
2003;
17
(15)
2299-2301
109
Barak Y, Liao D, He W et al..
Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity,
and colorectal cancer.
Proc Natl Acad Sci U S A.
2002;
99
(1)
303-308
110
Wang Y X, Lee C H, Tiep S et al..
Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent
obesity.
Cell.
2003;
113
(2)
159-170
111
Wang Y X, Zhang C L, Yu R T et al..
Regulation of muscle fiber type and running endurance by PPARdelta.
PLoS Biol.
2004;
2
(10)
e294
112
Magee T R, Han G, Cherian B, Khorram O, Ross M G, Desai M.
Down-regulation of transcription factor peroxisome proliferator-activated receptor
in programmed hepatic lipid dysregulation and inflammation in intrauterine growth-restricted
offspring.
Am J Obstet Gynecol.
2008;
199
(3)
271-275, e1–e5
113
Burdge G C, Slater-Jefferies J, Torrens C, Phillips E S, Hanson M A, Lillycrop K A.
Dietary protein restriction of pregnant rats in the F0 generation induces altered
methylation of hepatic gene promoters in the adult male offspring in the F1 and F2
generations.
Br J Nutr.
2007;
97
(3)
435-439
114
Kind K L, Simonetta G, Clifton P M, Robinson J S, Owens J A.
Effect of maternal feed restriction on blood pressure in the adult guinea pig.
Exp Physiol.
2002;
87
(4)
469-477
115
Kind K L, Clifton P M, Grant P A et al..
Effect of maternal feed restriction during pregnancy on glucose tolerance in the adult
guinea pig.
Am J Physiol Regul Integr Comp Physiol.
2003;
284
(1)
R140-R152
116
Lillycrop K A, Phillips E S, Jackson A A, Hanson M A, Burdge G C.
Dietary protein restriction of pregnant rats induces and folic acid supplementation
prevents epigenetic modification of hepatic gene expression in the offspring.
J Nutr.
2005;
135
(6)
1382-1386
117
Boney C M, Verma A, Tucker R, Vohr B R.
Metabolic syndrome in childhood: association with birth weight, maternal obesity,
and gestational diabetes mellitus.
Pediatrics.
2005;
115
(3)
e290-e296
118 Gluckman P D, Hanson M A. Metabolic disease: evolutionary, developmental and transgenerational
influences. In: Hornstra G, Uauy R, Yang X, eds. The Impact of Maternal Nutrition
on the Offspring. Basel, Switzerland: Vevey/S. Karger; 2005: 17-27
119
Simmons R.
Developmental origins of adult metabolic disease: concepts and controversies.
Trends Endocrinol Metab.
2005;
16
(8)
390-394
120
Barker D J, Hales C N, Fall C H, Osmond C, Phipps K, Clark P M.
Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia
(syndrome X): relation to reduced fetal growth.
Diabetologia.
1993;
36
(1)
62-67
121
Barker D J.
Fetal programming of coronary heart disease.
Trends Endocrinol Metab.
2002;
13
(9)
364-368
122
Bertram C E, Hanson M A.
Animal models and programming of the metabolic syndrome.
Br Med Bull.
2001;
60
103-121
123
De Blasio M J, Gatford K L, McMillen I C, Robinson J S, Owens J A.
Placental restriction of fetal growth increases insulin action, growth, and adiposity
in the young lamb.
Endocrinology.
2007;
148
(3)
1350-1358
124
Jaquet D, Vidal H, Hankard R, Czernichow P, Levy-Marchal C.
Impaired regulation of glucose transporter 4 gene expression in insulin resistance
associated with in utero undernutrition.
J Clin Endocrinol Metab.
2001;
86
(7)
3266-3271
125
Ozanne S E, Olsen G S, Hansen L L et al..
Early growth restriction leads to down regulation of protein kinase C zeta and insulin
resistance in skeletal muscle.
J Endocrinol.
2003;
177
(2)
235-241
126
Sparks L M, Xie H, Koza R A et al..
A high-fat diet coordinately downregulates genes required for mitochondrial oxidative
phosphorylation in skeletal muscle.
Diabetes.
2005;
54
(7)
1926-1933
127
Coll T, Jové M, Rodríguez-Calvo R et al..
Palmitate-mediated downregulation of peroxisome proliferator-activated receptor-gamma
coactivator 1alpha in skeletal muscle cells involves MEK1/2 and nuclear factor-kappaB
activation.
Diabetes.
2006;
55
(10)
2779-2787
128
Hoeks J, Hesselink M K, Russell A P et al..
Peroxisome proliferator-activated receptor-gamma coactivator-1 and insulin resistance:
acute effect of fatty acids.
Diabetologia.
2006;
49
(10)
2419-2426
129
Staiger H, Staiger K, Haas C, Weisser M, Machicao F, Häring H U.
Fatty acid-induced differential regulation of the genes encoding peroxisome proliferator-activated
receptor-gamma coactivator-1alpha and -1beta in human skeletal muscle cells that have
been differentiated in vitro.
Diabetologia.
2005;
48
(10)
2115-2118
130
Bayol S A, Simbi B H, Stickland N C.
A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs
skeletal muscle development and metabolism in rat offspring at weaning.
J Physiol.
2005;
567
(Pt 3)
951-961
131
Schaiff W T, Knapp Jr F F, Barak Y, Biron-Shental T, Nelson D M, Sadovsky Y.
Ligand-activated peroxisome proliferator activated receptor gamma alters placental
morphology and placental fatty acid uptake in mice.
Endocrinology.
2007;
148
(8)
3625-3634
132
Schaiff W T, Bildirici I, Cheong M, Chern P L, Nelson D M, Sadovsky Y.
Peroxisome proliferator-activated receptor-gamma and retinoid X receptor signaling
regulate fatty acid uptake by primary human placental trophoblasts.
J Clin Endocrinol Metab.
2005;
90
(7)
4267-4275
133
Garg M, Thamotharan M, Oak S A et al..
Early exercise regimen improves insulin sensitivity in the intrauterine growth-restricted
adult female rat offspring.
Am J Physiol Endocrinol Metab.
2009;
296
(2)
E272-E281
134
Eriksson J G, Ylihärsilä H, Forsén T, Osmond C, Barker D J.
Exercise protects against glucose intolerance in individuals with a small body size
at birth.
Prev Med.
2004;
39
(1)
164-167
135
Koves T R, Ussher J R, Noland R C et al..
Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal
muscle insulin resistance.
Cell Metab.
2008;
7
(1)
45-56
136
Kim J Y, Hickner R C, Cortright R L, Dohm G L, Houmard J A.
Lipid oxidation is reduced in obese human skeletal muscle.
Am J Physiol Endocrinol Metab.
2000;
279
(5)
E1039-E1044
137
Simoneau J A, Veerkamp J H, Turcotte L P, Kelley D E.
Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin
resistance and obesity and effects of weight loss.
FASEB J.
1999;
13
(14)
2051-2060
138
Godfrey K M, Lillycrop K A, Burdge G C, Gluckman P D, Hanson M A.
Epigenetic mechanisms and the mismatch concept of the developmental origins of health
and disease.
Pediatr Res.
2007;
61
(5 Pt 2)
5R-10R
139
Evans R M, Barish G D, Wang Y X.
PPARs and the complex journey to obesity.
Nat Med.
2004;
10
(4)
355-361
140
Kumar N, Dey C S.
Development of insulin resistance and reversal by thiazolidinediones in C2C12 skeletal
muscle cells.
Biochem Pharmacol.
2003;
65
(2)
249-257
141
Kim J E, Chen J.
regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian
target of rapamycin and amino acids in adipogenesis.
Diabetes.
2004;
53
(11)
2748-2756
142
Benton C R, Holloway G P, Campbell S E et al..
Rosiglitazone increases fatty acid oxidation and fatty acid translocase (FAT/CD36)
but not carnitine palmitoyltransferase I in rat muscle mitochondria.
J Physiol.
2008;
586
(6)
1755-1766
143
Luquet S, Lopez-Soriano J, Holst D et al..
Roles of peroxisome proliferator-activated receptor delta (PPARdelta) in the control
of fatty acid catabolism. A new target for the treatment of metabolic syndrome.
Biochimie.
2004;
86
(11)
833-837
144
Luquet S, Lopez-Soriano J, Holst D et al..
Roles of peroxisome proliferator-activated receptor delta (PPARdelta) in the control
of fatty acid catabolism. A new target for the treatment of metabolic syndrome.
Biochimie.
2004;
86
(11)
833-837
145
Fiévet C, Fruchart J C, Staels B.
PPARalpha and PPARgamma dual agonists for the treatment of type 2 diabetes and the
metabolic syndrome.
Curr Opin Pharmacol.
2006;
6
(6)
606-614
146
Grimaldi P A.
Regulatory role of peroxisome proliferator-activated receptor delta (PPAR delta) in
muscle metabolism. A new target for metabolic syndrome treatment?.
Biochimie.
2005;
87
(1)
5-8
147
Takahashi S, Tanaka T, Kodama T, Sakai J.
Peroxisome proliferator-activated receptor delta (PPARdelta), a novel target site
for drug discovery in metabolic syndrome.
Pharmacol Res.
2006;
53
(6)
501-507
148
Sprecher D L, Massien C, Pearce G et al..
Triglyceride:high-density lipoprotein cholesterol effects in healthy subjects administered
a peroxisome proliferator activated receptor delta agonist.
Arterioscler Thromb Vasc Biol.
2007;
27
(2)
359-365
149
Howitz K T, Bitterman K J, Cohen H Y et al..
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.
Nature.
2003;
425
(6954)
191-196
150
Sakkinen P A, Wahl P, Cushman M, Lewis M R, Tracy R P.
Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic
factors in insulin resistance syndrome.
Am J Epidemiol.
2000;
152
(10)
897-907
151
Law C M, Shiell A W.
Is blood pressure inversely related to birth weight? The strength of evidence from
a systematic review of the literature.
J Hypertens.
1996;
14
(8)
935-941
152
Curhan G C, Willett W C, Rimm E B, Spiegelman D, Ascherio A L, Stampfer M J.
Birth weight and adult hypertension, diabetes mellitus, and obesity in US men.
Circulation.
1996;
94
(12)
3246-3250
153
Nilsson P M, Ostergren P O, Nyberg P, Söderström M, Allebeck P.
Low birth weight is associated with elevated systolic blood pressure in adolescence:
a prospective study of a birth cohort of 149378 Swedish boys.
J Hypertens.
1997;
15
(12 Pt 2)
1627-1631
154
Huxley R R, Shiell A W, Law C M.
The role of size at birth and postnatal catch-up growth in determining systolic blood
pressure: a systematic review of the literature.
J Hypertens.
2000;
18
(7)
815-831
155
Grigore D, Ojeda N B, Robertson E B et al..
Placental insufficiency results in temporal alterations in the renin angiotensin system
in male hypertensive growth restricted offspring.
Am J Physiol Regul Integr Comp Physiol.
2007;
293
(2)
R804-R811
156
Alexander B T.
Placental insufficiency leads to development of hypertension in growth-restricted
offspring.
Hypertension.
2003;
41
(3)
457-462
157
Wlodek M E, Westcott K, Siebel A L, Owens J A, Moritz K M.
Growth restriction before or after birth reduces nephron number and increases blood
pressure in male rats.
Kidney Int.
2008;
74
(2)
187-195
158
Verma S, Anderson T J.
Fundamentals of endothelial function for the clinical cardiologist.
Circulation.
2002;
105
(5)
546-549
159
Celermajer D S, Sorensen K E, Bull C, Robinson J, Deanfield J E.
Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates
to coronary risk factors and their interaction.
J Am Coll Cardiol.
1994;
24
(6)
1468-1474
160
Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher A M.
Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation.
Nature.
1999;
399
(6736)
601-605
161
Montagnani M, Golovchenko I, Kim I et al..
Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin
in endothelial cells.
J Biol Chem.
2002;
277
(3)
1794-1799
162
Musicki B, Liu T, Lagoda G A et al..
Hypercholesterolemia-induced erectile dysfunction: endothelial nitric oxide synthase
(eNOS) uncoupling in the mouse penis by NAD(P)H oxidase.
J Sex Med.
2010;
7
(9)
3023-3032
163
Li H, Li H, Bao Y, Zhang X, Yu Y.
Free fatty acids induce endothelial dysfunction and activate protein kinase C and
nuclear factor-kappaB pathway in rat aorta.
Int J Cardiol.
2010;
August 5 (Epub ahead of print)
164
Goodfellow J, Bellamy M F, Gorman S T et al..
Endothelial function is impaired in fit young adults of low birth weight.
Cardiovasc Res.
1998;
40
(3)
600-606
165
Leeson C P, Kattenhorn M, Morley R, Lucas A, Deanfield J E.
Impact of low birth weight and cardiovascular risk factors on endothelial function
in early adult life.
Circulation.
2001;
103
(9)
1264-1268
166
Martin H, Hu J, Gennser G, Norman M.
Impaired endothelial function and increased carotid stiffness in 9-year-old children
with low birthweight.
Circulation.
2000;
102
(22)
2739-2744
167
Leeson C P, Whincup P H, Cook D G et al..
Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine
and childhood factors.
Circulation.
1997;
96
(7)
2233-2238
168
Payne J A, Alexander B T, Khalil R A.
Reduced endothelial vascular relaxation in growth-restricted offspring of pregnant
rats with reduced uterine perfusion.
Hypertension.
2003;
42
(4)
768-774
169
Berliner J A, Heinecke J W.
The role of oxidized lipoproteins in atherogenesis.
Free Radic Biol Med.
1996;
20
(5)
707-727
170
Huang K, Zou C C, Yang X Z, Chen X Q, Liang L.
Carotid intima-media thickness and serum endothelial marker levels in obese children
with metabolic syndrome.
Arch Pediatr Adolesc Med.
2010;
164
(9)
846-851
171
Redon J, Cifkova R, Laurent S et al..
Mechanisms of hypertension in the cardiometabolic syndrome.
J Hypertens.
2009;
27
(3)
441-451
172
Oren A, Vos L E, Uiterwaal C S, Gorissen W H, Grobbee D E, Bots M L.
Birth weight and carotid intima-media thickness: new perspectives from the atherosclerosis
risk in young adults (ARYA) study.
Ann Epidemiol.
2004;
14
(1)
8-16
173
Koklu E, Kurtoglu S, Akcakus M et al..
Increased aortic intima-media thickness is related to lipid profile in newborns with
intrauterine growth restriction.
Horm Res.
2006;
65
(6)
269-275
174
Koklu E, Ozturk M A, Kurtoglu S, Akcakus M, Yikilmaz A, Gunes T.
Aortic intima-media thickness, serum IGF-I, IGFBP-3, and leptin levels in intrauterine
growth-restricted newborns of healthy mothers.
Pediatr Res.
2007;
62
(6)
704-709
175
Morgan D A, Rahmouni K.
Differential effects of insulin on sympathetic nerve activity in agouti obese mice.
J Hypertens.
2010;
28
(9)
1913-1919
176
Lambert G W, Straznicky N E, Lambert E A, Dixon J B, Schlaich M P.
Sympathetic nervous activation in obesity and the metabolic syndrome—causes, consequences
and therapeutic implications.
Pharmacol Ther.
2010;
126
(2)
159-172
177
Jansson T, Lambert G W.
Effect of intrauterine growth restriction on blood pressure, glucose tolerance and
sympathetic nervous system activity in the rat at 3-4 months of age.
J Hypertens.
1999;
17
(9)
1239-1248
178
Ojeda N B, Royals T P, Black J T, Dasinger J H, Johnson J M, Alexander B T.
Enhanced sensitivity to acute angiotensin II is testosterone dependent in adult male
growth-restricted offspring.
Am J Physiol Regul Integr Comp Physiol.
2010;
298
(5)
R1421-R1427
179
Grigore D, Ojeda N B, Robertson E B et al..
Placental insufficiency results in temporal alterations in the renin angiotensin system
in male hypertensive growth restricted offspring.
Am J Physiol Regul Integr Comp Physiol.
2007;
293
(2)
R804-R811
180
Konje J C, Okaro C I, Bell S C, de Chazal R, Taylor D J.
A cross-sectional study of changes in fetal renal size with gestation in appropriate-
and small-for-gestational-age fetuses.
Ultrasound Obstet Gynecol.
1997;
10
(1)
22-26
181
Spencer J, Wang Z, Hoy W.
Low birth weight and reduced renal volume in Aboriginal children.
Am J Kidney Dis.
2001;
37
(5)
915-920
182
Hinchliffe S A, Lynch M R, Sargent P H, Howard C V, Van Velzen D.
The effect of intrauterine growth retardation on the development of renal nephrons.
Br J Obstet Gynaecol.
1992;
99
(4)
296-301
183
Moritz K M, Mazzuca M Q, Siebel A L et al..
Uteroplacental insufficiency causes a nephron deficit, modest renal insufficiency
but no hypertension with ageing in female rats.
J Physiol.
2009;
587
(Pt 11)
2635-2646
184
Martin J A, Osterman M J, Sutton P D.
Are preterm births on the decline in the United States? Recent data from the National
Vital Statistics System.
NCHS Data Brief.
2010;
39
1-8
185
Martin J A, Hamilton B E, Sutton P D Centers for Disease Control and Prevention National
Center for Health Statistics National Vital Statistics System et al.
Births: final data for 2005.
Natl Vital Stat Rep.
2007;
56
(6)
1-103
Timothy R.H. RegnaultPh.D.
Department of Obstetrics and Gynaecology
The University of Western Ontario, London, ON, Canada N6A 5C1
Email: tim.regnault@uwo.ca