Subscribe to RSS
DOI: 10.1055/s-0031-1275325
© Georg Thieme Verlag KG Stuttgart · New York
A Novel Mechanism for Decreasing Plasma Lipid Level from Imidazoline I-1 Receptor Activation in High Fat Diet-fed Mice
Publication History
received 15.12.2010
accepted 10.03.2011
Publication Date:
11 April 2011 (online)

Abstract
The imidazoline I-1 receptor (I-1 R) agonists are widely used to lower blood pressure, but their effects on hyperlipidemia are still obscure. The present study is aimed to evaluate the possible mechanism(s) of I-1 R in the regulation of lipid homeostasis. Farnesoid X receptor (FXR) plays an important role in blood lipid homeostasis; however, the role of FXR in rilmenidine-induced blood lipid lowering action is still unknown. Thus, we administered rilmenidine, a selective agonist of I-1 R, into high fat diet-fed (HFD) mice showing hypertriglyceridemia and hypercholesterolemia. Rilmenidine significantly ameliorated hyperlipidemia in HFD mice after 7 days of administration. Pretreatment with efaroxan, at a dose sufficient to inhibit I-1 R activation, blocked the effects of rilmenidine. Also, in cultured HepG2 cells, rilmenidine dose-dependently induced the expression of farnesoid X receptor (FXR). The rilmenidine-induced FXR expression and FXR-related genes were blocked by efaroxan. However, rilmenidine treatment did not affect the expression of enzymes related to β-oxidation. In conclusion, activation of I-1 R may activate FXR to lower plasma lipids, suggesting I-1 R as a new target for the treatment of hyperlipidemia.
Key words
cholesterol - efaroxan - imidazoline receptor - rilmenidine - triglyceride
References
- 1
Reaven GM.
Banting lecture 1988. Role of insulin resistance in human disease.
Diabetes.
1988;
37
1595-1607
MissingFormLabel
- 2
McBride P.
Triglycerides and risk for coronary artery disease.
Curr Atheroscler Rep.
2008;
10
386-390
MissingFormLabel
- 3
Howard BV, Ruotolo G, Robbins DC.
Obesity and dyslipidemia.
Endocrinol Metab Clin North Am.
2003;
32
855-867
MissingFormLabel
- 4
Bousquet P.
Identification and characterization of I1 imidazoline receptors: their role in blood
pressure regulation.
Am J Hypertens.
2000;
13
84S-88S
MissingFormLabel
- 5
Ernsberger P, Friedman JE, Koletsky RJ.
The I1-imidazoline receptor: from binding site to therapeutic target in cardiovascular
disease.
J Hypertens Suppl.
1997;
15
S9-S23
MissingFormLabel
- 6
Velliquette RA, Kossover R, Previs SF, Ernsberger P.
Lipid-lowering actions of imidazoline antihypertensive agents in metabolic syndrome
X.
Naunyn Schmiedebergs Arch Pharmacol.
2006;
372
300-312
MissingFormLabel
- 7
Lui TN, Tsao CW, Huang SY, Chang CH, Cheng JT.
Activation of imidazoline I2B receptors is linked with AMP kinase pathway to increase
glucose uptake in cultured C2C12 cells.
Neurosci Lett.
2010;
474
144-147
MissingFormLabel
- 8
Raasch W, Schafer U, Chun J, Dominiak P.
Biological significance of agmatine, an endogenous ligand at imidazoline binding sites.
Br J Pharmacol.
2001;
133
755-780
MissingFormLabel
- 9
Lu TT, Repa JJ, Mangelsdorf DJ.
Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism.
J Biol Chem.
2001;
276
37735-37738
MissingFormLabel
- 10
Repa JJ, Mangelsdorf DJ.
The liver X receptor gene team: potential new players in atherosclerosis.
Nat Med.
2002;
8
1243-1248
MissingFormLabel
- 11
Claudel T, Staels B, Kuipers F.
The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose
metabolism.
Arterioscler Thromb Vasc Biol.
2005;
25
2020-2030
MissingFormLabel
- 12
Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, Moore DD, Auwerx J.
Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c.
J Clin Invest.
2004;
113
1408-1418
MissingFormLabel
- 13
Beyer TP, Schmidt RJ, Foxworthy P, Zhang Y, Dai J, Bensch WR, Kauffman RF, Gao H, Ryan TP, Jiang XC, Karathanasis SK, Eacho PI, Cao G.
Coadministration of a liver X receptor agonist and a peroxisome proliferator activator
receptor-alpha agonist in Mice: effects of nuclear receptor interplay on high-density
lipoprotein and triglyceride metabolism in vivo.
J Pharmacol Exp Ther.
2004;
309
861-868
MissingFormLabel
- 14
Kane CD, Stevens KA, Fischer JE, Haghpassand M, Royer LJ, Aldinger C, Landschulz KT, Zagouras P, Bagley SW, Hada W, Dullea R, Hayward CM, Francone OL.
Molecular characterization of novel and selective peroxisome proliferator-activated
receptor alpha agonists with robust hypolipidemic activity in vivo.
Mol Pharmacol.
2009;
75
296-306
MissingFormLabel
- 15
Wang SR, Pessah M, Infante J, Catala D, Salvat C, Infante R.
Lipid and lipoprotein metabolism in Hep G2 cells.
Biochim Biophys Acta.
1988;
961
351-363
MissingFormLabel
- 16
Chapados NA, Seelaender M, Levy E, Lavoie JM.
Effects of exercise training on hepatic microsomal triglyceride transfer protein content
in rats.
Horm Metab Res.
2009;
41
287-393
MissingFormLabel
- 17
Ji W, Gong BQ.
Hypolipidemic effects and mechanisms of Panax notoginseng on lipid profile in hyperlipidemic
rats.
J Ethnopharmacol.
2007;
113
318-324
MissingFormLabel
- 18
Yu S, Rao S, Reddy JK.
Peroxisome proliferator-activated receptors, fatty acid oxidation, steatohepatitis
and hepatocarcinogenesis.
Curr Mol Med.
2003;
3
561-572
MissingFormLabel
- 19
Goldwasser J, Cohen PY, Yang E, Balaguer P, Yarmush ML, Nahmias Y.
Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit
flavonoid naringenin: role of PPARalpha, PPARgamma and LXRalpha.
PLoS One.
2010;
5
e12399
MissingFormLabel
- 20
Chen N, Bezzina R, Hinch E, Lewandowski PA, Cameron-Smith D, Mathai ML, Jois M, Sinclair AJ, Begg DP, Wark JD, Weisinger HS, Weisinger RS.
Green tea, black tea, and epigallocatechin modify body composition, improve glucose
tolerance, and differentially alter metabolic gene expression in rats fed a high-fat
diet.
Nutr Res.
2009;
29
784-793
MissingFormLabel
- 21
Song S, Attia RR, Connaughton S, Niesen MI, Ness GC, Elam MB, Hori RT, Cook GA, Park EA.
Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma coactivator
(PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene
elements.
Mol Cell Endocrinol.
2010;
325
54-63
MissingFormLabel
- 22
Zhang D, Christianson J, Liu ZX, Tian L, Choi CS, Neschen S, Dong J, Wood PA, Shulman GI.
Resistance to high-fat diet-induced obesity and insulin resistance in mice with very
long-chain acyl-CoA dehydrogenase deficiency.
Cell Metab.
2010;
11
402-411
MissingFormLabel
- 23
Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, Evans RM, Weinberger C.
Identification of a nuclear receptor that is activated by farnesol metabolites.
Cell.
1995;
81
687-693
MissingFormLabel
- 24
Zhang Y, Kast-Woelbern HR, Edwards PA.
Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional
activation.
J Biol Chem.
2003;
278
104-110
MissingFormLabel
- 25
Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ.
Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis.
Cell.
2000;
102
731-744
MissingFormLabel
- 26
Edwards PA, Kast HR, Anisfeld AM.
BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis.
J Lipid Res.
2002;
43
2-12
MissingFormLabel
- 27
Maloney PR, Parks DJ, Haffner CD, Fivush AM, Chandra G, Plunket KD, Creech KL, Moore LB, Wilson JG, Lewis MC, Jones SA, Willson TM.
Identification of a chemical tool for the orphan nuclear receptor FXR.
J Med Chem.
2000;
43
2971-2974
MissingFormLabel
- 28
Kast HR, Nguyen CM, Sinal CJ, Jones SA, Laffitte BA, Reue K, Gonzalez FJ, Willson TM, Edwards PA.
Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular
mechanism linking plasma triglyceride levels to bile acids.
Mol Endocrinol.
2001;
15
1720-1728
MissingFormLabel
- 29
Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA.
Peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) regulates
triglyceride metabolism by activation of the nuclear receptor FXR.
Genes Dev.
2004;
18
157-169
MissingFormLabel
- 30
Horton JD, Goldstein JL, Brown MS.
SREBPs: activators of the complete program of cholesterol and fatty acid synthesis
in the liver.
J Clin Invest.
2002;
109
1125-1131
MissingFormLabel
- 31
Goldberg IJ, Scheraldi CA, Yacoub LK, Saxena U, Bisgaier CL.
Lipoprotein ApoC-II activation of lipoprotein lipase. Modulation by apolipoprotein
A-IV.
J Biol Chem.
1990;
265
4266-4272
MissingFormLabel
- 32
Staels B, Vu-Dac N, Kosykh VA, Saladin R, Fruchart JC, Dallongeville J, Auwerx J.
Fibrates downregulate apolipoprotein C-III expression independent of induction of
peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action
of fibrates.
J Clin Invest.
1995;
95
705-712
MissingFormLabel
- 33
Claudel T, Inoue Y, Barbier O, Duran-Sandoval D, Kosykh V, Fruchart J, Fruchart JC, Gonzalez FJ, Staels B.
Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression.
Gastroenterology.
2003;
125
544-555
MissingFormLabel
- 34
Blacklow SC.
Versatility in ligand recognition by LDL receptor family proteins: advances and frontiers.
Curr Opin Struct Biol.
2007;
17
419-426
MissingFormLabel
- 35
Ma PT, Gil G, Südhof TC, Bilheimer DW, Goldstein JL, Brown MS.
Mevinolin, an inhibitor of cholesterol synthesis, induces mRNA for low density lipoprotein
receptor in livers of hamsters and rabbits.
Proc Natl Acad Sci U S A.
1986;
83
8370-8374
MissingFormLabel
- 36
Bilheimer DW, Grundy SM, Brown MS, Goldstein JL.
Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein
from plasma in familial hypercholesterolemia heterozygotes.
Proc Natl Acad Sci USA.
1983;
80
4124-4128
MissingFormLabel
- 37
Cayla C, Schaak S, Roquelaine C, Gales C, Quinchon F, Paris H.
Homologous regulation of the alpha2C-adrenoceptor subtype in human hepatocarcinoma,
HepG2.
Br J Pharmacol.
1999;
126
69-78
MissingFormLabel
- 38
Charlton-Menys V, Durrington PN.
Human cholesterol metabolism and therapeutic molecules.
Exp Physiol.
2008;
93
27-42
MissingFormLabel
1 These authors contributed equally to this work.
Correspondence
Prof. J-T. Cheng
Institute of Basic Medical
Sciences
College of Medicine
National Cheng Kung University
Tainan City
Taiwan 70101
R.O.C
Phone: +886/6/331 8516
Fax: +886/6/331 7532
Prof. C-T. Chen
Department of Pediatrics
Chi-Mei Medical Center
Tainan City
Taiwan 73101
R.O.C
Phone: +886/6/251 7864
Fax: +886/6/253 2639
Email: jtcheng@mail.ncku.edu.tw