Subscribe to RSS
DOI: 10.1055/s-0031-1273196
© Georg Thieme Verlag KG Stuttgart · New York
Die molekularen Mechanismen der Replikation des Hepatitis C Virus – Implikationen für die Entwicklung antiviraler Wirkstoffe
Molecular Mechanisms of Hepatitis C Virus (HCV) Replication – Implications for the Development of Antiviral DrugsPublication History
Manuskript eingetroffen: 18.10.2010
Manuskript akzeptiert: 13.2.2011
Publication Date:
15 July 2011 (online)

Zusammenfassung
Die chronische Infektion mit dem Hepatitis-C-Virus (HCV) ist auch mehr als 20 Jahre nach seiner Entdeckung ein wichtiges medizinisches Problem. 120 – 180 Millionen Menschen weltweit sind nach Schätzungen der Weltgesundheitsorganisation chronisch mit HCV infiziert, wovon etwa 5 Millionen Menschen in Westeuropa leben. Diese haben ein hohes Risiko für die Entwicklung einer Leberzirrhose oder eines hepatozellulären Karzinoms (HCC). Die aktuelle Therapie hat zahlreiche Limitationen und ein Vakzin ist nicht in Sicht. Intensive Forschungsaktivitäten, insbesondere die Entwicklung adäquater Zellkultursysteme, haben neue Einblicke in den viralen Vermehrungszyklus ergeben sowie grundlegende Strategien identifiziert, mit denen das Virus vermutlich der immunologischen Kontrolle entkommt. Adäquate Zellsysteme lieferten auch die Grundlage für die Entwicklung potenter und selektiver Wirkstoffe zur Behandlung der chronischen Hepatitis C und man rechnet 2011 / 2012 mit der Zulassung der NS 3 / 4A-Proteaseinhibitoren der ersten Generation. Dennoch gibt es eine Reihe wichtiger und bis heute ungeklärter Fragen, deren Beantwortung Forscher wie Kliniker die nächsten Jahre noch beschäftigen wird.
Abstract
More than 20 years after the discovery of the hepatitis C virus (HCV), chronic hepatitis C still is a major medical problem. According to the World Health Organisation 120 to 180 million people are chronically infected with HCV, with 5 million infected individuals living in Western Europe. These people have a high risk to develop serious liver disease such as liver cirrhosis and hepatocellular carcinoma (HCC). The standard-of-care therapy is not satisfying and there is no vaccine in sight. Owing to intense research activities, most notably the development of adequate cell culture systems, important insights into the viral replication cycle have been gained and several strategies used by HCV to overcome immune responses have been identified. Adequate cell culture systems also provided the basis for the development of potent and selective antivirals for treatment of chronic hepatitis C and it is expected that NS 3 / 4A protease inhibitors will be approved for clinical use in 2011 / 2012. Nevertheless, important questions are still unanswered and they will keep clinicians and basic researchers busy for the coming years.
Schlüsselwörter
Leber - Hepatitis C - antivirale Wirkstoffe - HCV-Replikation - HCV-Wirt-Interaktion
Key words
liver - hepatitis C - antiviral drugs - HCV replication - HCV-host interaction
Literatur
- 1
Marcellin P.
Hepatitis B and hepatitis C in 2009.
Liver Int.
2009;
29 (Suppl 1)
1-8
MissingFormLabel
- 2
Ge D, Fellay J, Thompson A J et al.
Genetic variation in IL 28B predicts hepatitis C treatment-induced viral clearance.
Nature.
2009;
461
399-401
MissingFormLabel
- 3
Tanaka Y, Nishida N, Sugiyama M et al.
Genome-wide association of IL 28B with response to pegylated interferon-alpha and
ribavirin therapy for chronic hepatitis C.
Nat Genet.
2009;
41
1105-1109
MissingFormLabel
- 4
Suppiah V, Moldovan M, Ahlenstiel G et al.
IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin
therapy.
Nat Genet.
2009;
41
1100-1104
MissingFormLabel
- 5
Thomas D L, Thio C L, Martin M P et al.
Genetic variation in IL 28B and spontaneous clearance of hepatitis C virus.
Nature.
2009;
461
798-801
MissingFormLabel
- 6
Marcello T, Grakoui A, Barba-Spaeth G et al.
Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal
transduction and gene regulation kinetics.
Gastroenterology.
2006;
131
1887-1898
MissingFormLabel
- 7
Robek M D, Boyd B S, Chisari F V.
Lambda interferon inhibits hepatitis B and C virus replication.
J Virol.
2005;
79
3851-3854
MissingFormLabel
- 8
Lohmann V, Körner F, Koch J O et al.
Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line.
Science.
1999;
285
110-113
MissingFormLabel
- 9
Kato T, Furusaka A, Miyamoto M et al.
Sequence analysis of hepatitis C virus isolated from a fulminant hepatitis patient.
J Med Virol.
2001;
64
334-339
MissingFormLabel
- 10
Wakita T, Pietschmann T, Kato T et al.
Production of infectious hepatitis C virus in tissue culture from a cloned viral genome.
Nat Med.
2005;
11
791-796
MissingFormLabel
- 11
Bartenschlager R, Sparacio S.
Hepatitis C virus molecular clones and their replication capacity in vivo and in cell
culture.
Virus Res.
2007;
127
195-207
MissingFormLabel
- 12
Friebe P, Bartenschlager R.
Genetic analysis of sequences in the 3’ nontranslated region of hepatitis C virus
that are important for RNA replication.
J Virol.
2002;
76
5326-5338
MissingFormLabel
- 13
Jopling C L, Yi M, Lancaster A M et al.
Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA.
Science.
2005;
309
1577-1581
MissingFormLabel
- 14
Henke J I, Goergen D, Zheng J et al.
microRNA-122 stimulates translation of hepatitis C virus RNA.
EMBO J.
2008;
27
3300-3310
MissingFormLabel
- 15
Jangra R K, Yi M Lemon SM.
Regulation of Hepatitis C Virus Translation and Infectious Virus Production by the
MicroRNA miR-122.
J Virol.
2010;
84
6615-6625
MissingFormLabel
- 16
Steinmann E, Penin F, Kallis S et al.
Hepatitis C Virus p7 Protein Is Crucial for Assembly and Release of Infectious Virions.
PLoS Pathog.
2007;
3
e103
MissingFormLabel
- 17
Wozniak A L, Griffin S, Rowlands D et al.
Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution
to infectious virus production.
PLoS Pathog.
2010;
6
e1001087
MissingFormLabel
- 18
Luik P, Chew C, Aittoniemi J et al.
The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy.
Proc Natl Acad Sci U S A.
2009;
106
12 712-12 716
MissingFormLabel
- 19
Lorenz I C, Marcotrigiano J, Dentzer T G et al.
Structure of the catalytic domain of the hepatitis C virus NS 2-3 protease.
Nature.
2006;
442
831-835
MissingFormLabel
- 20
Phan T, Beran R K, Peters C et al.
Hepatitis C virus NS 2 protein contributes to virus particle assembly via opposing
epistatic interactions with the E 1-E2 glycoprotein and NS 3-NS4A enzyme complexes.
J Virol.
2009;
83
8379-8395
MissingFormLabel
- 21
Egger D, Wolk B, Gosert R et al.
Expression of hepatitis C virus proteins induces distinct membrane alterations including
a candidate viral replication complex.
J Virol.
2002;
76
5974-5984
MissingFormLabel
- 22
Gosert R, Egger D, Lohmann V et al.
Identification of the hepatitis C virus RNA replication complex in huh-7 cells harboring
subgenomic replicons.
J Virol.
2003;
77
5487-5492
MissingFormLabel
- 23
Quintavalle M, Sambucini S, Summa V et al.
Hepatitis C virus NS 5A is a direct substrate of casein kinase I-alpha, a cellular
kinase identified by inhibitor affinity chromatography using specific NS 5A hyperphosphorylation
inhibitors.
J Biol Chem.
2007;
282
5536-5544
MissingFormLabel
- 24
Quintavalle M, Sambucini S, Di Pietro C et al.
The alpha isoform of protein kinase CKI is responsible for hepatitis C virus NS 5A
hyperphosphorylation.
J Virol.
2006;
80
11 305-11 312
MissingFormLabel
- 25
Tellinghuisen T L, Foss K L, Treadaway J.
Regulation of hepatitis C virion production via phosphorylation of the NS 5A protein.
PLoS Pathog.
2008;
4
e1000032
MissingFormLabel
- 26
Eng F J, Walewski J L, Klepper A L et al.
Internal initiation stimulates production of p8 minicore, a member of a newly discovered
family of hepatitis C virus core protein isoforms.
J Virol.
2009;
83
3104-3114
MissingFormLabel
- 27
Vassilaki N, Mavromara P.
The HCV ARFP/F/core + 1 protein: production and functional analysis of an unconventional
viral product.
IUBMB Life.
2009;
61
739-752
MissingFormLabel
- 28
Vassilaki N, Friebe P, Meuleman P et al.
Role of the hepatitis C virus core + 1 open reading frame and core cis-acting RNA
elements in viral RNA translation and replication.
J Virol.
2008;
82
11503-11515
MissingFormLabel
- 29
McMullan L K, Grakoui A, Evans M J et al.
Evidence for a functional RNA element in the hepatitis C virus core gene.
Proc Natl Acad Sci U S A.
2007;
104
2879-2884
MissingFormLabel
- 30
Jiang J, Luo G.
Apolipoprotein E but not B is required for the formation of infectious hepatitis C
virus particles.
J Virol.
2009;
83
12680-12691
MissingFormLabel
- 31
Popescu C I, Dubuisson J.
Role of lipid metabolism in hepatitis C virus assembly and entry.
Biol Cell.
2010;
102
63-74
MissingFormLabel
- 32
Coyne C B, Bergelson J M.
Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial
tight junctions.
Cell.
2006;
124
119-131
MissingFormLabel
- 33
Welsch S, Miller S, Romero-Brey I et al.
Composition and three-dimensional architecture of the dengue virus replication and
assembly sites.
Cell Host Microbe.
2009;
5
365-375
MissingFormLabel
- 34
Moradpour D, Englert C, Wakita T et al.
Characterization of cell lines allowing tightly regulated expression of hepatitis
C virus core protein.
Virology.
1996;
222
51-63
MissingFormLabel
- 35
Barba G, Harper F, Harada T et al.
Hepatitis C virus core protein shows a cytoplasmic localization and associates to
cellular lipid storage droplets.
Proc Natl Acad Sci U S A.
1997;
94
1200-1205
MissingFormLabel
- 36
Miyanari Y, Atsuzawa K, Usuda N et al.
The lipid droplet is an important organelle for hepatitis C virus production.
Nat Cell Biol.
2007;
9
1089-1097
MissingFormLabel
- 37
Shavinskaya A, Boulant S, Penin F et al.
The lipid droplet binding domain of hepatitis C virus core protein is a major determinant
for efficient virus assembly.
J Biol Chem.
2007;
282
37158-37169
MissingFormLabel
- 38
Boulant S, Targett-Adams P, McLauchlan J.
Disrupting the association of hepatitis C virus core protein with lipid droplets correlates
with a loss in production of infectious virus.
J Gen Virol.
2007;
88
2204-2213
MissingFormLabel
- 39
Chang K S, Jiang J, Cai Z et al.
Human apolipoprotein e is required for infectivity and production of hepatitis C virus
in cell culture.
J Virol.
2007;
81
13783-13793
MissingFormLabel
- 40
Huang H, Sun F, Owen D M et al.
Hepatitis C virus production by human hepatocytes dependent on assembly and secretion
of very low-density lipoproteins.
Proc Natl Acad Sci U S A.
2007;
104
5848-5853
MissingFormLabel
- 41
Gastaminza P, Cheng G, Wieland S et al.
Cellular determinants of hepatitis C virus assembly, maturation, degradation, and
secretion.
J Virol.
2008;
82
2120-2129
MissingFormLabel
- 42
Benga W J, Krieger S E, Dimitrova M et al.
Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines
assembly of infectious particles.
Hepatology.
2010;
51
43-53
MissingFormLabel
- 43
Aizaki H, Morikawa K, Fukasawa M et al.
Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus
infection.
J Virol.
2008;
82
5715-5724
MissingFormLabel
- 44
Li K, Foy E, Ferreon J C et al.
Immune evasion by hepatitis C virus NS 3 / 4A protease-mediated cleavage of the Toll-like
receptor 3 adaptor protein TRIF.
Proc Natl Acad Sci USA.
2005;
102
2992-2997
MissingFormLabel
- 45
Meylan E, Curran J, Hofmann K et al.
Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis
C virus.
Nature.
2005;
437
1167-1172
MissingFormLabel
- 46
Bellecave P, Sarasin-Filipowicz M, Donze O et al.
Cleavage of mitochondrial antiviral signaling protein in the liver of patients with
chronic hepatitis C correlates with a reduced activation of the endogenous interferon
system.
Hepatology.
2010;
51
1127-1136
MissingFormLabel
- 47
Garaigorta U, Chisari F V.
Hepatitis C virus blocks interferon effector function by inducing protein kinase R
phosphorylation.
Cell Host Microbe.
2009;
6
513-522
MissingFormLabel
- 48
Arnaud N, Dabo S, Maillard P et al.
Hepatitis C virus controls interferon production through PKR activation.
PLoS ONE.
2010;
5
e10575
MissingFormLabel
- 49
Blindenbacher A, Duong F H, Hunziker L et al.
Expression of hepatitis c virus proteins inhibits interferon alpha signaling in the
liver of transgenic mice.
Gastroenterology.
2003;
124
1465-1475
MissingFormLabel
- 50
Luquin E, Larrea E, Civeira M P et al.
HCV structural proteins interfere with interferon-alpha Jak/STAT signalling pathway.
Antiviral Res.
2007;
76
194-197
MissingFormLabel
- 51
Frese M, Pietschmann T, Moradpour D et al.
Interferon-alpha inhibits hepatitis C virus subgenomic RNA replication by an MxA-independent
pathway.
J Gen Virol.
2001;
82
723-733
MissingFormLabel
- 52
Frese M, Schwarzle V, Barth K et al.
Interferon-gamma inhibits replication of subgenomic and genomic hepatitis C virus
RNAs.
Hepatology.
2002;
35
694-703
MissingFormLabel
- 53
Erickson A L, Kimura Y, Igarashi S et al.
The outcome of hepatitis C virus infection is predicted by escape mutations in epitopes
targeted by cytotoxic T lymphocytes.
Immunity.
2001;
15
883-895
MissingFormLabel
- 54
Dazert E, Neumann-Haefelin C, Bressanelli S et al.
Loss of viral fitness and cross-recognition by CD 8 + T cells limit HCV escape from
a protective HLA-B27-restricted human immune response.
J Clin Invest.
2009;
119
376-386
MissingFormLabel
- 55
Dowd K A, Netski D M, Wang X H et al.
Selection pressure from neutralizing antibodies drives sequence evolution during acute
infection with hepatitis C virus.
Gastroenterology.
2009;
136
2377-2386
MissingFormLabel
- 56
Hahn von T, Yoon J C, Alter H et al.
Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses
during chronic infection in vivo.
Gastroenterology.
2007;
132
667-678
MissingFormLabel
- 57
Timpe J M, McKeating J A.
Hepatitis C virus entry: possible targets for therapy.
Gut.
2008;
57
1728-1737
MissingFormLabel
- 58
Diepolder H M, Zachoval R, Hoffmann R M et al.
Possible mechanism involving T-lymphocyte response to non-structural protein 3 in
viral clearance in acute hepatitis C virus infection.
Lancet.
1995;
346
1006-1007
MissingFormLabel
- 59
Gerlach J T, Diepolder H M, Jung M C et al.
Recurrence of hepatitis C virus after loss of virus-specific CD 4(+ ) T-cell response
in acute hepatitis C.
Gastroenterology.
1999;
117
933-941
MissingFormLabel
- 60
Lechner F, Gruener N H, Urbani S et al.
CD8 + T lymphocyte responses are induced during acute hepatitis C virus infection
but are not sustained.
Eur J Immunol.
2000;
30
2479-2487
MissingFormLabel
- 61
Thimme R, Oldach D, Chang K M et al.
Determinants of viral clearance and persistence during acute hepatitis C virus infection.
J Exp Med.
2001;
194
1395-1406
MissingFormLabel
- 62
Crawford A, Wherry E J.
The diversity of costimulatory and inhibitory receptor pathways and the regulation
of antiviral T cell responses.
Curr Opin Immunol.
2009;
21
179-186
MissingFormLabel
- 63
Neumann-Haefelin C, Blum H E, Chisari F V et al.
T cell response in hepatitis C virus infection.
J Clin Virol.
2005;
32
75-85
MissingFormLabel
- 64
Tester I, Smyk-Pearson S, Wang P et al.
Immune evasion versus recovery after acute hepatitis C virus infection from a shared
source.
J Exp Med.
2005;
201
1725-1731
MissingFormLabel
- 65
Lemon S M, McKeating J A, Pietschmann T et al.
Development of novel therapies for hepatitis C.
Antiviral Res.
2010;
86
79-92
MissingFormLabel
- 66
Shimakami T, Lanford R E, Lemon S M.
Hepatitis C: recent successes and continuing challenges in the development of improved
treatment modalities.
Curr Opin Pharmacol.
2009;
9
537-544
MissingFormLabel
- 67
Sarrazin C, Zeuzem S.
Resistance to direct antiviral agents in patients with hepatitis C virus infection.
Gastroenterology.
2010;
138
447-462
MissingFormLabel
- 68
Bihl F, Negro F.
Treatment of chronic hepatitis C.
Minerva Med.
2009;
100
459-465
MissingFormLabel
- 69
Gao M, Nettles R E, Belema M et al.
Chemical genetics strategy identifies an HCV NS 5A inhibitor with a potent clinical
effect.
Nature.
2010;
465
96-100
MissingFormLabel
- 70
Lemm J A, O’Boyle D, Liu M et al.
Identification of hepatitis C virus NS 5A inhibitors.
J Virol.
2010;
84
482-491
MissingFormLabel
- 71
Fridell R A, Qiu D, Wang C et al.
Resistance analysis of the hepatitis C virus NS 5A inhibitor BMS-790052 in an in vitro
replicon system.
Antimicrob Agents Chemother.
2010;
54
3641-3650
MissingFormLabel
- 72
Gao M, Wang C, Sun J et al.
Genotypic and phenotypic analysis of HCV NS 5A inhibitor resitance variants: Correlation
between in vitro and in vivo (2010), Abstracts 1880-2047.
Hepatology.
2010;
52
1214A-1291A
DOI: 10.1002 /hep.23997
MissingFormLabel
- 73
Kaul A, Stauffer S, Berger C et al.
Essential role of cyclophilin A for hepatitis C virus replication and virus production
and possible link to polyprotein cleavage kinetics.
PLoS Pathog.
2009;
5
e1000546
MissingFormLabel
- 74
Yang F, Robotham J M, Nelson H B et al.
Cyclophilin A is an essential cofactor for hepatitis C virus infection and the principal
mediator of cyclosporine resistance in vitro.
J Virol.
2008;
82
5269-5278
MissingFormLabel
- 75
Chatterji U, Bobardt M, Selvarajah S et al.
The isomerase active site of cyclophilin A is critical for hepatitis C virus replication.
J Biol Chem.
2009;
284
16998-17005
MissingFormLabel
- 76
Hanoulle X, Badillo A, Wieruszeski J M et al.
Hepatitis C virus NS 5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase
activity of cyclophilins A and B.
J Biol Chem.
2009;
284
13589-13601
MissingFormLabel
- 77
Ciesek S, Steinmann E, Wedemeyer H et al.
Cyclosporine A inhibits hepatitis C virus nonstructural protein 2 through cyclophilin
A.
Hepatology.
2009;
50
1638-1645
MissingFormLabel
- 78
Watashi K, Hijikata M, Hosaka M et al.
Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes.
Hepatology.
2003;
38
1282-1288
MissingFormLabel
- 79
Ma S, Boerner J E, TiongYip C et al.
NIM811, a cyclophilin inhibitor, exhibits potent in vitro activity against hepatitis
C virus alone or in combination with alpha interferon.
Antimicrob Agents Chemother.
2006;
50
2976-2982
MissingFormLabel
- 80
Paeshuyse J, Kaul A, De Clercq E et al.
The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis
C virus replication in vitro.
Hepatology.
2006;
43
761-770
MissingFormLabel
- 81
Flisiak R, Horban A, Gallay P et al.
The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C effect in patients
coinfected with hepatitis C and human immunodeficiency virus.
Hepatology.
2008;
47
817-826
MissingFormLabel
- 82
Crabbe R, Vuagniaux G, Dumont J M et al.
An evaluation of the cyclophilin inhibitor Debio 025 and its potential as a treatment
for chronic hepatitis C.
Expert Opin Investig Drugs.
2009;
18
211-220
MissingFormLabel
- 83
Puyang X, Poulin D L, Mathy J E et al.
Mechanism of resistance of hepatitis C virus replicons to structurally distinct cyclophilin
inhibitors.
Antimicrob Agents Chemother.
2010;
54
1981-1987
MissingFormLabel
- 84
Chatterji U, Lim P, Bobardt M D et al.
HCV resistance to cyclosporin A does not correlate with a resistance of the NS 5A-cyclophilin
A interaction to cyclophilin inhibitors.
J Hepatol.
2010;
53
50-56
MissingFormLabel
- 85
Liu Z, Robida J M, Chinnaswamy S et al.
Mutations in the hepatitis C virus polymerase that increase RNA binding can confer
resistance to cyclosporine A.
Hepatology.
2009;
50
25-33
MissingFormLabel
- 86
Lanford R E, Hildebrandt-Eriksen E S, Petri A et al.
Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection.
Science.
2010;
327
198-201
MissingFormLabel
- 87
Ploss A, Evans M J, Gaysinskaya V A et al.
Human occludin is a hepatitis C virus entry factor required for infection of mouse
cells.
Nature.
2009;
457
882-886
MissingFormLabel
- 88
Zeuzem S, Buggisch P, Agarwal K et al.
Dual, Triple, and quadruble combination treatmnet with a protease inhibitor (GS-9256)
and a polymerase inhibitor (GS-9190) alone and in combination with Ribavirin (RBV)
or PEGIFN/RBV for up to 28 days in treatment naïve, genotype 1 HCV subjects (2010),
Oral presentations.
Hepatology.
2010;
52
51A-120A.
DOI: 10.1002/hep.23971
MissingFormLabel
- 89
Pietschmann T, Kaul A, Koutsoudakis G et al.
Construction and characterization of infectious intragenotypic and intergenotypic
hepatitis C virus chimeras.
Proc Natl Acad Sci U S A.
2006;
103
7408-7413
MissingFormLabel
- 90
Wong-Staal F, Syder A J, McKelvy J F.
Targeting HCV Entry For Development of Therapeutics.
Viruses.
2010;
2
1718-1733
MissingFormLabel
- 91
Griffin S.
Inhibition of HCV p7 as a therapeutic target.
Curr Opin Investig Drugs.
2010;
11
175-181
MissingFormLabel
- 92
Raney K D, Sharma S D, Moustafa I M et al.
Hepatitis C virus non-structural protein 3 (HCV NS 3): a multifunctional antiviral
target.
J Biol Chem.
2010;
285
22725-22731
MissingFormLabel
- 93
Legrand-Abravanel F, Nicot F, Izopet J.
New NS 5B polymerase inhibitors for hepatitis C.
Expert Opin Investig Drugs.
2010;
19
963-975
MissingFormLabel
Prof. Dr. Ralf Bartenschlager
Department für Infektiologie, Molekulare Virologie, Universitätsklinikum Heidelberg
Im Neuenheimer Feld 345
69120 Heidelberg
Phone: ++ 49/62 21/56 42 25
Fax: ++ 49/62 21/56 45 70
Email: ralf_bartenschlager@med.uni-heidelberg.de