neuroreha 2011; 3(1): 10-17
DOI: 10.1055/s-0031-1273062
Schwerpunkt Willkürmotorik und Kognition
© Georg Thieme Verlag KG Stuttgart · New York

Zerebrale Repräsentation von Bewegung

Further Information

Publication History

Publication Date:
23 February 2011 (online)

Zusammenfassung

Die zentrale Steuerung der Motorik ist sehr komplex, und viele Mechanismen sind noch ungeklärt. Dieser Artikel soll helfen, einen Überblick über die Vielzahl von Ergebnissen zu erhalten, die bildgebende Studien in den letzten Jahren zu diesem Thema beigetragen haben. Mithilfe dieser bildgebenden Techniken wie funktionelle Magnetresonanztomographie (fMRT), die Positronen-Emissions-Tomographie (PET), die Elektroencephalographie (EEG) und Magnetoencephalographie (MEG) sowie die Transkranielle Magnetstimulation (TMS) versuchen Wissenschaftler die kortikalen Areale der Motorik aufzuzeigen. Martin Lotze stellt in seinem Artikel die einzelnen motorischen Areale in ihrer funktionellen Relevanz vor und erklärt kurz das Zusammenspiel der motorischen Areale für unterschiedliche Bewegung im Cerebrum und Cerebellum.

Literatur

  • 01 Alexander G E, Crutcher M D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing.  Trends Neurosci. 1990;  13 266-271
  • 02 Binkofski F, Buccino G. The role of ventral premotor cortex in action execution and action understanding.  J Physiol Paris. 2006;  99 396-405
  • 03 Bloedel J R. Functional heterogeneity with structural homogeinity: how does the cerebellum operate?.  Behav Brain Sci. 1992;  5 666-678
  • 04 Braun C, Heinz U, Schweizer R et al.. Dynamic organization of the somatosensory cortex induced by motor activity.  Brain. 2001;  124 2259-2267
  • 05 Buccino G, Vogt S, Ritzl A et al.. Neural circuits underlying imitation learning of hand actions: an event-related fMRI study.  Neuron.. 2004;  42 323-334
  • 06 Cavina-Pratesi C, Monaco S, Fattori P et al.. Functional magnetic resonance imaging reveals the neural substrates of arm transportand grip formation in reach-to-grasp actions in humans.  J Neurosci. 2010;  30 10306-10323
  • 07 Decety J, Jeannerod M, Prablanc C. The timing of mentally represented actions.  Behav Brain Res. 1989;  34 35-42
  • 08 Debaere F, Swinnen S P, Béatse E et al.. Brain Areas Involved in Interlimb Coordination: A Distributed Network.  NeuroImage. 2001;  14 947-958
  • 09 Desmurget M, Epstein C M, Turner R S et al.. ole of the posterior parietal cortex in updating reaching movements to a visual target.  Nat Neurosci.. 1999;  2 563-567
  • 10 Dettmers Ch, Fink G R, Lemon R N et al.. Relation between cerebral activity and force in the motor areas of the human brain.  J Neurophysiol. 1995;  74 802-815
  • 11 Eickhoff S B, Stephan K E, Mohlberg H et al.. A new spm toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data.  Neuroimage. 2005;  25 1325-1335
  • 12 Elbert T, Pantev Ch, Wienbruch Ch. Increased cortical representation of the fingers of the left hand in string players.  Science. 1995;  270 305-307
  • 13 Farah M J. The neural basis of mental imagery. In: Gazzaniga M, (Ed) The cognitive neurosciences. 2 1995: 963-975
  • 14 Foerster O. The motor cortex in man in the light of Hughlings Jackson’s doctrines.  Brain. 1936;  59 135-159
  • 15 Gerloff C, Corwell B, Chen R et al.. The role of the human motor cortex in the control of complex and simple finger movement sequences.  Brain. 1998;  121 1695-1709
  • 16 Geyer S, Ledberg A, Schleicher A et al.. Two different areas within the primary motor cortex of man.  Nature. 1996;  382 805-807
  • 17 Grèzes J, Armony J L, Rowe J et al.. Activations related to „mirror” and „canonical” neurones in the human brain: an fMRI study.  Neuroimage. 2003;  18 928-937
  • 18 Grodd W, Hülsmann E, Lotze M et al.. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization.  Hum Brain Mapp. 2001;  13 55-73
  • 19 Halsband U, Ito N, Tanji J et al.. The role of premotor cortex and the supplementary motor area in the temporal control of movement in man.  Brain. 1993;  116 243-266
  • 20 Halsband U, Matsuzaka Y, Tanji J et al.. Neuronal activity in the primate supplementary, pre-supplementary and premotor cortex during externally and internally instructed sequential movements.  Neurosci Res. 1994;  20 149-155
  • 21 Halsband U, Krause B J, Schmidt D et al.. Encoding and retrieval in declarative learning: a positron emission tomography study.  Behav Brain Res. 1998;  97 69-78
  • 22 Halsband U, Schmitt J, Weyers M et al.. Recognition and imitation of pantomimed motor acts after unilateral parietal and premotor lesions: a perspective on apraxia.  Neuropsychologia. 2001;  39 200-216
  • 23 Hari R, Forss N, Avikainen S et al.. Activation of human primary motor cortex during action observation: a neuromagnetic study.  PNAS. 1998;  95 1561-1569
  • 24 Hebb D O. The organization of behavior: a neuropsychological theory. Wiley; New York; 1949
  • 25 Hoshi E, Tremblay L, Féger J et al.. The cerebellum communicates with the basal ganglia.  Nat Neurosci.. 2005;  8 1491-1493
  • 26 Jahn K, Deutschländer A, Stephan T et al.. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging.  Neuroimage. 2004;  22 1722-1731
  • 27 Jäncke J, Specht K, Mirzazade S et al.. The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation: A functional magnetic resonance imaging study.  Neuroimage. 1999;  19 497-507
  • 28 Jeannerod M, Decety J. Mental motor imagery.  Curr Opin Neurobiol. 1995;  5 727-732
  • 29 Jueptner M, Weiller C. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies.  Brain. 1998;  121 1437-1449
  • 30 Kleber B, Veit R, Birbaumer N et al.. Singing in the brain: experience-dependent neuronal specialization for vocal skills.  Cerebral Cortex. 2010;  20 1144-1152
  • 31 Lewandowski M. Die zentralen Bewegungssteuerungen. In: Lewandowsky M, Hrsg. . Handbuch der Neurologie; 1 (2) 1910: 685-772
  • 32 Lewis P A, Wing A M, Pope P A et al.. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation and continuation phases of paced finger tapping.  Neuropsychologia. 2004;  42 1301-1312
  • 33 Lotze M, Montoya P, Erb M et al.. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study.  Journal of Cognitive Neuroscience. 1999;  11 491-501
  • 34 Lotze M, Erb M, Flor H et al.. fMRI-evaluation of somatotopic representation in human primary motor cortex.  NeuroImage. 2000;  11 473-481
  • 35 Lotze M, Scheler G, Tan H R M et al.. The musician’s brain: functional imaging of amateurs and professionals during performance and imagery.  NeuroImage. 2003;  20 1817-1829
  • 36 Lotze M, Halsband H. Motor Imagery.  Journal of Physiology. Paris 2006;  99 386-395
  • 37 Lotze M, Reimold M, Heymans U et al.. Reduced ventrolateral fMRI response during observation of emotional gestures related to reduced dopamine in the putamen.  J Cogn Neuroscience. 2009;  21 1321-1331
  • 38 Luria A R. Higher cortical functions in man. Tavistock Publications; London; 1966
  • 39 Mattay V S, Callicott J H, Bertolino A et al.. Hemispheric control of motor function: a whole brain echo planar fMRI study.  Psychiatry Res. 1998;  83 7-22
  • 40 Muakkassa K, Strick P L. Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized „premotor” areas.  Brain Res. 1979;  177 176-182
  • 41 Naito E, Kinomura S, Geyer S et al.. Fast reaction to different sensory modalities activates common fields in the motor areas, but the anterior cingulate cortex is involved in the speed of reaction.  J Neurophysiol. 2000;  83 1701-1709
  • 42 Remy P, Zilbovicius M, Leroy-Willig A et al.. Movement and task related activations of motor cortical areas: a PET-study.  Ann Neurol. 1994;  36 19-26
  • 43 Rijntjes M, Dettmers C, Büchel Ch et al.. A Blueprint for Movement: Functional and Anatomical Representations in the Human Motor System.  The Journal of Neuroscience. 1999;  19 8043
  • 44 Schubotz R I, von Cramon Y D. Dynamic patterns make the premotor cortex interested in objects: influence of stimulus and task revealed by fMRI.  Cognitive Brain Research. 2002;  14 357-369
  • 45 Schlaug G, Jancke L, Huang Y et al.. In vivo evidence of structural brain asymmetry in musicians.  Science. 1995;  267 699-701
  • 46 Stephan K M, Fink G R, Passingham R E et al.. Functional anatomy of the mental representation of upper extremity movements in healthy subjects.  J Neurophysiol. 1995;  73 373-386
  • 47 Stephan K M, Binkofski F, Halsband U et al.. The role of ventral medial wall motor areas in bimanual coordination – a combined lesion and activation study.  Brain. 1999;  122 351-368
  • 48 Schweizer R, Voit D, Frahm J. Finger representations in human primary somatosensory cortex as revealed by high-resolution functional MRI of tactile stimulation.  Neuroimage. 2008;  42 28-35
  • 49 Thach W, Goodkin H P, Keating J G. The cerebellum and the adaptive coordination of movement.  Annu Rev Neurosci. 1992;  15 403-442
  • 50 Uswatte G, Taub E, Morris D et al.. Crago J.Contribution of the shaping and restraint components of Constraint-Induced Movement therapy to treatment outcome.  Neuro Rehabil. 2006;  21 147-156
  • 51 Weiller C, Jüptner M, Fellows S et al.. Brain representation of active and passive movements.  Neuroimage. 1996;  4 105-110
  • 52 Weiss P H, Marshall J C, Wunderlich G et al.. Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations.  Brain. 2000;  12 2531-2534
  • 53 Yousry T A, Schmid U D, Alkadhi H et al.. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark.  Brain. 1997;  120 141-157

Prof. Dr. med. Martin Lotze

Universität Greifswald

Leiter der Abteilung für Funktionelle Bildgebung,Diagnostische Radiologie und Neuroradiologie

Friedrich-Löffler-Straße 23a

17487 Greifswald

Phone: 03834/866899

Fax: 03834/866898

Email: martin.lotze@uni-greifswald.de

    >