Semin Musculoskelet Radiol 2011; 15(1): 069-088
DOI: 10.1055/s-0031-1271960
© Thieme Medical Publishers

Clinical and MRI Considerations in Sports-Related Knee Joint Cartilage Injury and Cartilage Repair

Richard J. Hughes1 , David G. Houlihan-Burne2
  • 1Department of Radiology, Stoke Mandeville Hospital, Aylesbury, Buckinghamshire, United Kingdom
  • 2Department of Orthopaedic Surgery, Hillingdon and Mount Vernon NHS Trust, Northwood, Middlesex, United Kingdom
Further Information

Publication History

Publication Date:
17 February 2011 (online)


Cartilage injuries of the knee occur frequently in professional and amateur athletes and can be associated with severe debilitation and morbidity. They are commonly associated with ligament injuries but also may be frequently isolated. Increasing awareness and advances in magnetic resonance imaging (MRI) have led to increasing diagnosis and recognition of these injuries. Articular cartilage is just 2 to 4 mm thick and is avascular, alymphatic, and aneural. It has a limited capacity for healing, and there has been increasing use of cartilage repair techniques to treat these lesions in the active population. Strategies for cartilage repair include marrow stimulation techniques such as microfracture/drilling, osteochondral grafting, and autologous chondrocyte transplants. MRI is an important tool in the diagnosis and grading of cartilage injury and is useful in the follow-up and monitoring of these repair procedures. It is important for radiologists and clinicians to be aware of the capabilities and limitations of MRI in assessing cartilage injury and to be familiar with common postsurgical appearances to facilitate assessment and follow-up in this population. This article reviews the clinical findings and MRI imaging appearances of cartilage injury. The management options are discussed as well as common postsurgical appearances following the various interventions.


  • 1 Hunter W. On the structure and disease of articulating cartilage.  Philos Trans R Soc Lond B Biol Sci. 1743;  9 267
  • 2 Messner K, Wei X. Healing chondral injuries.  Sports Med Arthrosc Rev. 1998;  6 13-24
  • 3 Curl W W, Krome J, Gordon E S, Rushing J, Smith B P, Poehling G G. Cartilage injuries: a review of 31,516 knee arthroscopies.  Arthroscopy. 1997;  13(4) 456-460
  • 4 Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies.  Knee. 2007;  14(3) 177-182
  • 5 Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies.  Arthroscopy. 2002;  18(7) 730-734
  • 6 Widuchowski W, Lukasik P, Kwiatkowski G et al.. Isolated full thickness chondral injuries. Prevalence and outcome of treatment. A retrospective study of 5233 knee arthroscopies.  Acta Chir Orthop Traumatol Cech. 2008;  75(5) 382-386
  • 7 Bauer M, Jackson R W. Chondral lesions of the femoral condyles: a system of arthroscopic classification.  Arthroscopy. 1988;  4(2) 97-102
  • 8 Outerbridge R E. The etiology of chondromalacia patellae.  J Bone Joint Surg Br. 1961;  43-B(4) 752-757
  • 9 Kleemann R U, Krocker D, Cedraro A, Tuischer J, Duda G N. Altered cartilage mechanics and histology in knee osteoarthritis: relation to clinical assessment (ICRS grade).  Osteoarthritis Cartilage. 2005;  13(11) 958-963
  • 10 Brittberg M, Winalski C S. Evaluation of cartilage injuries and repair.  J Bone Joint Surg Am. 2003;  85-A(Suppl 2) 58-69
  • 11 Disler D G, McCauley T R, Kelman C G et al.. Fat-suppressed three-dimensional spoiled gradient echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy.  AJR Am J Roentgenol. 1996;  167(1) 127-132
  • 12 Brophy R H, Zeltser D, Wright R W, Flanigan D. Anterior cruciate ligament reconstruction and concomitant articular cartilage injury: incidence and treatment.  Arthroscopy. 2010;  26(1) 112-120
  • 13 Hunt N, Sanchez-Ballester J, Pandit R, Thomas R, Strachan R. Chondral lesions of the knee: a new localization method and correlation with associated pathology.  Arthroscopy. 2001;  17(5) 481-490
  • 14 Buckwalter J A. Sports, joint injury, and posttraumatic osteoarthritis.  J Orthop Sports Phys Ther. 2003;  33(10) 578-588
  • 15 Wilk K E, Briem K, Reinold M M, Devine K M, Dugas J, Andrews J R. Rehabilitation of articular lesions in the athlete's knee.  J Orthop Sports Phys Ther. 2006;  36(10) 815-827
  • 16 Nakamae A, Engebretsen L, Bahr R, Krosshaug T, Ochi M. Natural history of bone bruises after acute knee injury: clinical outcome and histopathological findings.  Knee Surg Sports Traumatol Arthrosc. 2006;  14(12) 1252-1258
  • 17 Brophy R H, Rodeo S A, Barnes R P, Powell J W, Warren R F. Knee articular cartilage injuries in the National Football League: epidemiology and treatment approach by team physicians.  J Knee Surg. 2009;  22(4) 331-338
  • 18 Golightly Y M, Marshall S W, Callahan L F, Guskiewicz K. Early-onset arthritis in retired National Football League players.  J Phys Act Health. 2009;  6(5) 638-643
  • 19 Elleuch M H, Guermazi M, Mezghanni M et al.. Knee osteoarthritis in 50 former top-level soccer players: a comparative study.  Ann Readapt Med Phys. 2008;  51(3) 174-178
  • 20 Widuchowski W, Widuchowski J, Koczy B, Szyluk K. Untreated asymptomatic deep cartilage lesions associated with anterior cruciate ligament injury: results at 10- and 15-year follow-up.  Am J Sports Med. 2009;  37(4) 688-692
  • 21 Kaplan L D, Schurhoff M R, Selesnick H, Thorpe M, Uribe J W. Magnetic resonance imaging of the knee in asymptomatic professional basketball players.  Arthroscopy. 2005;  21(5) 557-561
  • 22 Major N M, Helms C A. MR imaging of the knee: findings in asymptomatic collegiate basketball players.  AJR Am J Roentgenol. 2002;  179(3) 641-644
  • 23 De Smet A A, Tuite M J. Use of the “two-slice-touch” rule for the MRI diagnosis of meniscal tears.  AJR Am J Roentgenol. 2006;  187(4) 911-914
  • 24 Disler D G. Fat-suppressed three-dimensional spoiled gradient-recalled MR imaging: assessment of articular and physeal hyaline cartilage.  AJR Am J Roentgenol. 1997;  169(4) 1117-1123
  • 25 Kawahara Y, Uetani M, Nakahara N et al.. Fast spin-echo MR of the articular cartilage in the osteoarthrotic knee. Correlation of MR and arthroscopic findings.  Acta Radiol. 1998;  39(2) 120-125
  • 26 Potter H G, Linklater J M, Allen A A, Hannafin J A, Haas S B. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging.  J Bone Joint Surg Am. 1998;  80(9) 1276-1284
  • 27 Recht M, Bobic V, Burstein D et al.. Magnetic resonance imaging of articular cartilage.  Clin Orthop Relat Res. 2001;  (391, Suppl) S379-S396
  • 28 McCauley T R, Recht M P, Disler D G. Clinical imaging of articular cartilage in the knee.  Semin Musculoskelet Radiol. 2001;  5(4) 293-304
  • 29 Bobic V. ICRS Articular Cartilage Imaging Committee .ICRS MR Imaging Protocol for Knee Articular Cartilage. Zollikon, Switzerland: ICRS; 2000: 12
  • 30 Alparslan L, Winalski C S, Boutin R D, Minas T. Postoperative magnetic resonance imaging of articular cartilage repair.  Semin Musculoskelet Radiol. 2001;  5(4) 345-363
  • 31 Marlovits S, Mamisch T C, Vekszler G, Resinger C, Trattnig S. Magnetic resonance imaging for diagnosis and assessment of cartilage defect repairs.  Injury. 2008;  39(Suppl 1) S13-S25
  • 32 Bredella M A, Tirman P F, Peterfy C G et al.. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients.  AJR Am J Roentgenol. 1999;  172(4) 1073-1080
  • 33 Recht M P, Piraino D W, Paletta G A, Schils J P, Belhobek G H. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities.  Radiology. 1996;  198(1) 209-212
  • 34 Yoshioka H, Stevens K, Genovese M, Dillingham M F, Lang P. Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis.  Radiology. 2004;  231(1) 31-38
  • 35 Krampla W, Roesel M, Svoboda K, Nachbagauer A, Gschwantler M, Hruby W. MRI of the knee: how do field strength and radiologist's experience influence diagnostic accuracy and interobserver correlation in assessing chondral and meniscal lesions and the integrity of the anterior cruciate ligament?.  Eur Radiol. 2009;  19(6) 1519-1528
  • 36 Yulish B S, Montanez J, Goodfellow D B, Bryan P J, Mulopulos G P, Modic M T. Chondromalacia patellae: assessment with MR imaging.  Radiology. 1987;  164(3) 763-766
  • 37 Disler D G, McCauley T R, Wirth C R, Fuchs M D. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy.  AJR Am J Roentgenol. 1995;  165(2) 377-382
  • 38 Trattnig S, Mlynárik V, Huber M, Ba-Ssalamah A, Puig S, Imhof H. Magnetic resonance imaging of articular cartilage and evaluation of cartilage disease.  Invest Radiol. 2000;  35(10) 595-601
  • 39 Rubenstein J D, Li J G, Majumdar S, Henkelman R M. Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage.  AJR Am J Roentgenol. 1997;  169(4) 1089-1096
  • 40 Recht M P, Goodwin D W, Winalski C S, White L M. MRI of articular cartilage: revisiting current status and future directions.  AJR Am J Roentgenol. 2005;  185(4) 899-914
  • 41 Masi J N, Sell C A, Phan C et al.. Cartilage MR imaging at 3.0 versus that at 1.5 T: preliminary results in a porcine model.  Radiology. 2005;  236(1) 140-150
  • 42 Barr C, Bauer J S, Malfair D et al.. MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens.  Eur Radiol. 2007;  17(6) 1518-1528
  • 43 Kijowski R, Blankenbaker D G, Davis K W, Shinki K, Kaplan L D, De Smet A A. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint.  Radiology. 2009;  250(3) 839-848
  • 44 Kijowski R, Blankenbaker D G, Woods M A, Shinki K, De Smet A A, Reeder S B. 3.0-T evaluation of knee cartilage by using three-dimensional IDEAL GRASS imaging: comparison with fast spin-echo imaging.  Radiology. 2010;  255(1) 117-127
  • 45 Mathieu L, Bouchard A, Marchaland J P et al.. Knee MR-arthrography in assessment of meniscal and chondral lesions.  Orthop Traumatol Surg Res. 2009;  95(1) 40-47
  • 46 Burstein D, Gray M L. Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis?.  Osteoarthritis Cartilage. 2006;  14(11) 1087-1090
  • 47 Mamisch T C, Trattnig S, Quirbach S, Marlovits S, White L M, Welsch G H. Quantitative T2 mapping of knee cartilage: differentiation of healthy control cartilage and cartilage repair tissue in the knee with unloading—initial results.  Radiology. 2010;  254(3) 818-826
  • 48 Welsch G H, Trattnig S, Scheffler K et al.. Magnetization transfer contrast and T2 mapping in the evaluation of cartilage repair tissue with 3T MRI.  J Magn Reson Imaging. 2008;  28(4) 979-986
  • 49 White L M, Sussman M S, Hurtig M, Probyn L, Tomlinson G, Kandel R. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects.  Radiology. 2006;  241(2) 407-414
  • 50 Watanabe A, Boesch C, Anderson S E, Brehm W, Mainil Varlet P. Ability of dGEMRIC and T2 mapping to evaluate cartilage repair after microfracture: a goat study.  Osteoarthritis Cartilage. 2009;  17(10) 1341-1349
  • 51 Salzmann G M, Paul J, Bauer J S et al.. T2 assessment and clinical outcome following autologous matrix-assisted chondrocyte and osteochondral autograft transplantation.  Osteoarthritis Cartilage. 2009;  17(12) 1576-1582
  • 52 Barclay T S, Tsourounis C, McCart G M. Glucosamine.  Ann Pharmacother. 1998;  32(5) 574-579
  • 53 Black C, Clar C, Henderson R et al.. The clinical effectiveness of glucosamine and chondroitin supplements in slowing or arresting progression of osteoarthritis of the knee: a systematic review and economic evaluation.  Health Technol Assess. 2009;  13(52) 1-148
  • 54 Shelbourne K D, Jari S, Gray T. Outcome of untreated traumatic articular cartilage defects of the knee: a natural history study.  J Bone Joint Surg Am. 2003;  85-A(Suppl 2) 8-16
  • 55 Choi Y S, Potter H G, Chun T J. MR imaging of cartilage repair in the knee and ankle.  Radiographics. 2008;  28(4) 1043-1059
  • 56 Roberts S, McCall I W, Darby A J et al.. Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology.  Arthritis Res Ther. 2003;  5(1) R60-R73
  • 57 Marlovits S, Striessnig G, Resinger C T et al.. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging.  Eur J Radiol. 2004;  52(3) 310-319
  • 58 Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years.  Eur J Radiol. 2006;  57(1) 16-23
  • 59 Domayer S E, Welsch G H, Dorotka R et al.. MRI monitoring of cartilage repair in the knee: a review.  Semin Musculoskelet Radiol. 2008;  12(4) 302-317
  • 60 Burman M, Finkelstein H, Mayer L. Arthroscopy of the knee.  J Bone Joint Surg Am. 1934;  16 255-268
  • 61 Bert J M, Maschka K. The arthroscopic treatment of unicompartmental gonarthrosis: a five-year follow-up study of abrasion arthroplasty plus arthroscopic debridement and arthroscopic debridement alone.  Arthroscopy. 1989;  5(1) 25-32
  • 62 Dines J S, Fealy S, Potter H G, Warren R F. Outcomes of osteochondral lesions of the knee repaired with a bioabsorbable device.  Arthroscopy. 2008;  24(1) 62-68
  • 63 Wouters D B, van Horn J R, Bos R R. The use of biodegradables in the treatment of osteochondritis dissecans of the knee: fiction or future?.  Acta Orthop Belg. 2003;  69(2) 175-181
  • 64 Sirlin C B, Boutin R D, Brossmann J et al.. Polydioxanone biodegradable pins in the knee: MR imaging.  AJR Am J Roentgenol. 2001;  176(1) 83-90
  • 65 Verstraete K L, Almqvist F, Verdonk P et al.. Magnetic resonance imaging of cartilage and cartilage repair.  Clin Radiol. 2004;  59(8) 674-689
  • 66 Furukawa T, Eyre D R, Koide S, Glimcher M J. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee.  J Bone Joint Surg Am. 1980;  62(1) 79-89
  • 67 Steadman J R, Ramappa A J, Maxwell R B, Briggs K K. An arthroscopic treatment regimen for osteoarthritis of the knee.  Arthroscopy. 2007;  23(9) 948-955
  • 68 Blevins F T, Steadman J R, Rodrigo J J, Silliman J. Treatment of articular cartilage defects in athletes: an analysis of functional outcome and lesion appearance.  Orthopedics. 1998;  21(7) 761-767; discussion 767–768
  • 69 Gudas R, Kalesinskas R J, Kimtys V et al.. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes.  Arthroscopy. 2005;  21(9) 1066-1075
  • 70 Namdari S, Baldwin K, Anakwenze O, Park M J, Huffman G R, Sennett B J. Results and performance after microfracture in National Basketball Association athletes.  Am J Sports Med. 2009;  37(5) 943-948
  • 71 Steadman J R, Miller B S, Karas S G, Schlegel T F, Briggs K K, Hawkins R J. The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players.  J Knee Surg. 2003;  16(2) 83-86
  • 72 Mithoefer K, Williams R J, Warren R F, Wickiewicz T L, Marx R G. High impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique.  Am J Sports Med. 2006;  34(9) 1413-1418
  • 73 Kreuz P C, Steinwachs M R, Erggelet C et al.. Results after microfracture of full-thickness chondral defects in different compartments in the knee.  Osteoarthritis Cartilage. 2006;  14(11) 1119-1125
  • 74 Steadman J R, Briggs K K, Rodrigo J J, Kocher M S, Gill T J, Rodkey W G. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up.  Arthroscopy. 2003;  19(5) 477-484
  • 75 Bedi A, Feeley B T, Williams III R J. Management of articular cartilage defects of the knee.  J Bone Joint Surg Am. 2010;  92(4) 994-1009
  • 76 Mithoefer K, Williams III R J, Warren R F et al.. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study.  J Bone Joint Surg Am. 2005;  87(9) 1911-1920
  • 77 Brown W E, Potter H G, Marx R G, Wickiewicz T L, Warren R F. Magnetic resonance imaging appearance of cartilage repair in the knee.  Clin Orthop Relat Res. 2004;  422(422) 214-223
  • 78 Ramappa A J, Gill T J, Bradford C H, Ho C P, Steadman J R. Magnetic resonance imaging to assess knee cartilage repair tissue after microfracture of chondral defects.  J Knee Surg. 2007;  20(3) 228-234
  • 79 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.  N Engl J Med. 1994;  331(14) 889-895
  • 80 Briggs T W, Mahroof S, David L A, Flannelly J, Pringle J, Bayliss M. Histological evaluation of chondral defects after autologous chondrocyte implantation of the knee.  J Bone Joint Surg Br. 2003;  85(7) 1077-1083
  • 81 Henderson I, Francisco R, Oakes B, Cameron J. Autologous chondrocyte implantation for treatment of focal chondral defects of the knee—a clinical, arthroscopic, MRI and histologic evaluation at 2 years.  Knee. 2005;  12(3) 209-216
  • 82 Micheli L J, Browne J E, Erggelet C. Autologous chondrocyte implantation of the knee: multicentre experience and minimum 3-year follow-up.  Clin J Sport Med. 2001;  11(4) 223-228
  • 83 Bentley G, Biant L C, Carrington R W et al.. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee.  J Bone Joint Surg Br. 2003;  85(2) 223-230
  • 84 Wood J J, Malek M A, Frassica F J et al.. Autologous cultured chondrocytes: adverse events reported to the United States Food and Drug Administration.  J Bone Joint Surg Am. 2006;  88(3) 503-507
  • 85 Peterson L, Minas T, Brittberg M, Nilsson A, Sjögren-Jansson E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee.  Clin Orthop Relat Res. 2000;  (374) 212-234
  • 86 Niemeyer P, Salzmann G, Steinwachs M et al.. Presence of subchondral bone marrow edema at the time of treatment represents a negative prognostic factor for early outcome after autologous chondrocyte implantation.  Arch Orthop Trauma Surg. 2010;  130(8) 977-983
  • 87 Wada Y, Watanabe A, Yamashita T, Isobe T, Moriya H. Evaluation of articular cartilage with 3D-SPGR MRI after autologous chondrocyte implantation.  J Orthop Sci. 2003;  8(4) 514-517
  • 88 Ho Y Y, Stanley A J, Hui JH-P, Wang S C. Postoperative evaluation of the knee after autologous chondrocyte implantation: what radiologists need to know.  Radiographics. 2007;  27(1) 207-220; discussion 221–222
  • 89 Alparslan L, Minas T, Winalski C S. Magnetic resonance imaging of autologous chondrocyte implantation.  Semin Ultrasound CT MR. 2001;  22(4) 341-351
  • 90 Henderson I J, Tuy B, Connell D, Oakes B, Hettwer W H. Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months.  J Bone Joint Surg Br. 2003;  85(7) 1060-1066
  • 91 Trattnig S, Ba-Ssalamah A, Pinker K, Plank C, Vecsei V, Marlovits S. Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging.  Magn Reson Imaging. 2005;  23(7) 779-787
  • 92 Tins B J, McCall I W, Takahashi T et al.. Autologous chondrocyte implantation in knee joint: MR imaging and histologic features at 1-year follow-up.  Radiology. 2005;  234(2) 501-508
  • 93 Henderson I, Gui J, Lavigne P. Autologous chondrocyte implantation: natural history of postimplantation periosteal hypertrophy and effects of repair-site debridement on outcome.  Arthroscopy. 2006;  22(12) 1318-1324, e1
  • 94 Kreuz P C, Steinwachs M, Erggelet C et al.. Classification of graft hypertrophy after autologous chondrocyte implantation of full-thickness chondral defects in the knee.  Osteoarthritis Cartilage. 2007;  15(12) 1339-1347
  • 95 Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee.  Clin Orthop Relat Res. 2001;  (391, Suppl) S349-S361
  • 96 Caumo F, Russo A, Faccioli N et al.. Autologous chondrocyte implantation: prospective MRI evaluation with clinical correlation.  Radiol Med (Torino). 2007;  112(5) 722-731
  • 97 Robertson W B, Fick D, Wood D J, Linklater J M, Zheng M H, Ackland T R. MRI and clinical evaluation of collagen-covered autologous chondrocyte implantation (CACI) at two years.  Knee. 2007;  14(2) 117-127
  • 98 Bodo G, Hangody L, Modis L, Hurtig M. Autologous osteochondral grafting (mosaic arthroplasty) for treatment of subchondral cystic lesions in the equine stifle and fetlock joints.  Vet Surg. 2004;  33(6) 588-596
  • 99 Hangody L, Kish G, Kárpáti Z, Udvarhelyi I, Szigeti I, Bély M. Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice.  Orthopedics. 1998;  21(7) 751-756
  • 100 Hangody L, Vásárhelyi G, Hangody L R et al.. Autologous osteochondral grafting—technique and long-term results.  Injury. 2008;  39(Suppl 1) S32-S39
  • 101 Sanders T G, Mentzer K D, Miller M D, Morrison W B, Campbell S E, Penrod B J. Autogenous osteochondral “plug” transfer for the treatment of focal chondral defects: postoperative MR appearance with clinical correlation.  Skeletal Radiol. 2001;  30(10) 570-578
  • 102 Solheim E, Hegna J, Oyen J, Austgulen O K, Harlem T, Strand T. Osteochondral autografting (mosaicplasty) in articular cartilage defects in the knee: results at 5 to 9 years.  Knee. 2010;  17(1) 84-87
  • 103 Hangody L, Dobos J, Baló E, Pánics G, Hangody L R, Berkes I. Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: a 17-year prospective multicenter study.  Am J Sports Med. 2010;  38(6) 1125-1133
  • 104 Fitzpatrick P L, Morgan D A. Fresh osteochondral allografts: a 6-10-year review.  Aust N Z J Surg. 1998;  68(8) 573-579
  • 105 Williams III R J, Ranawat A S, Potter H G, Carter T, Warren R F. Fresh stored allografts for the treatment of osteochondral defects of the knee.  J Bone Joint Surg Am. 2007;  89(4) 718-726
  • 106 Recht M, White L M, Winalski C S, Miniaci A, Minas T, Parker R D. MR imaging of cartilage repair procedures.  Skeletal Radiol. 2003;  32(4) 185-200
  • 107 Link T M, Mischung J, Wörtler K, Burkart A, Rummeny E J, Imhoff A B. Normal and pathological MR findings in osteochondral autografts with longitudinal follow-up.  Eur Radiol. 2006;  16(1) 88-96
  • 108 Trattnig S, Millington S A, Szomolanyi P, Marlovits S. MR imaging of osteochondral grafts and autologous chondrocyte implantation.  Eur Radiol. 2007;  17(1) 103-118
  • 109 Sirlin C B, Brossmann J, Boutin R D et al.. Shell osteochondral allografts of the knee: comparison of MR imaging findings and immunologic responses.  Radiology. 2001;  219(1) 35-43
  • 110 Carmont M R, Carey-Smith R, Saithna A, Dhillon M, Thompson P, Spalding T. Delayed incorporation of a TruFit plug: perseverance is recommended.  Arthroscopy. 2009;  25(7) 810-814
  • 111 Williams R J, Gamradt S C. Articular cartilage repair using a resorbable matrix scaffold.  Instr Course Lect. 2008;  57 563-571
  • 112 Streitparth F, Schöttle P, Schlichting K et al.. Osteochondral defect repair after implantation of biodegradable scaffolds: indirect magnetic resonance arthrography and histopathologic correlation.  Acta Radiol. 2009;  50(7) 765-774
  • 113 Welsch G H, Mamisch T C, Zak L et al.. Evaluation of cartilage repair tissue after matrix-associated autologous chondrocyte transplantation using a hyaluronic-based or a collagen-based scaffold with morphological MOCART scoring and biochemical T2 mapping: preliminary results.  Am J Sports Med. 2010;  38(5) 934-942

Richard J. HughesM.A. M.R.C.P. F.R.C.R. 

Department of Radiology, Stoke Mandeville Hospital, Mandeville Road

Aylesbury HP21 8AL, UK