Semin Hear 2011; 32(1): 032-041
DOI: 10.1055/s-0031-1271946
© Thieme Medical Publishers

Acoustic Cues for Consonant Perception with Combined Acoustic and Electric Hearing in Children

Teresa Y.C Ching1
  • 1National Acoustic Laboratories, Australian Hearing; Hearing Cooperative Research Centre, Sydney, NSW, Australia
Further Information

Publication History

Publication Date:
22 March 2011 (online)

ABSTRACT

Many children who use a cochlear implant in one ear have usable residual hearing in the opposite ear. There is consensus that bilateral stimulation should be provided to these children by fitting a hearing aid in the nonimplanted ear. The combination of acoustic amplification via a hearing aid with electrical stimulation via a cochlear implant is commonly referred to as “bimodal hearing.” This article examines speech perceptual benefits associated with the use of bimodal hearing in children. First, a brief description of the acoustic basis for phonetic contrasts is provided. Second, information on children's consonant perception and information transmission via the use of cochlear implants with or without hearing aids is presented. Finally, a summary of fitting strategies is presented with validation results. These results support the optimization of a hearing aid with a cochlear implant for children.

REFERENCES

  • 1 Geers A E, Brenner C, Davidson L. Factors associated with development of speech perception skills in children implanted by age five.  Ear Hear. 2003;  24 (1 Suppl) 24S-35S
  • 2 Svirsky M A, Robbins A M, Kirk K I, Pisoni D B, Miyamoto R T. Language development in profoundly deaf children with cochlear implants.  Psychol Sci. 2000;  11 (2) 153-158
  • 3 Ching T Y, van Wanrooy E, Dillon H. Binaural-bimodal fitting or bilateral implantation for managing severe to profound deafness: a review.  Trends Amplif. 2007;  11 (3) 161-192
  • 4 Ching T YC. The evidence calls for making binaural-bimodal fitting routine.  Hearing Journal. 2005;  58 32-41
  • 5 Ching T YC. Binaural hearing with hearing aids and/or cochlear implants in children.  ENT & Audiology News. 2010;  18 (6) 88-90
  • 6 Dunn C C, Tyler R S, Oakley S, Gantz B J, Noble W. Comparison of speech recognition and localization performance in bilateral and unilateral cochlear implant users matched on duration of deafness and age at implantation.  Ear Hear. 2008;  29 (3) 352-359
  • 7 Van Tasell D J, Soli S D, Kirby V M, Widin G P. Speech waveform envelope cues for consonant recognition.  J Acoust Soc Am. 1987;  82 (4) 1152-1161
  • 8 Faulkner A, Rosen S. Contributions of temporal encodings of voicing, voicelessness, fundamental frequency, and amplitude variation to audio-visual and auditory speech perception.  J Acoust Soc Am. 1999;  106 (4 Pt 1) 2063-2073
  • 9 Liberman A M. Speech: A Special Code. Cambridge, MA: The MIT Press; 1996
  • 10 Green T, Faulkner A, Rosen S. Enhancing temporal cues to voice pitch in continuous interleaved sampling cochlear implants.  J Acoust Soc Am. 2004;  116 (4 Pt 1) 2298-2310
  • 11 Ching T YC, van Wanrooy E, Dillon H. Binaural-bimodal fitting or bilateral implantation for managing severe to profound deafness: a review.  Trends Amplif. 2007;  11 (3) 161-192
  • 12 Sammeth C A, Bundy S M, Miller D A. Bimodal hearing or bilateral cochlear implants: a review of the research literature.  Semin Hear. 2011;  32 3-31
  • 13 Cullington H E, Zeng F G. Bimodal hearing benefit for speech recognition with competing voice in cochlear implant subject with normal hearing in contralateral ear.  Ear Hear. 2010;  31 (1) 70-73
  • 14 Zhang T, Dorman M F, Spahr A J. Information from the voice fundamental frequency (F0) region accounts for the majority of the benefit when acoustic stimulation is added to electric stimulation.  Ear Hear. 2010;  31 (1) 63-69
  • 15 Chang J E, Bai J Y, Zeng F G. Unintelligible low-frequency sound enhances simulated cochlear-implant speech recognition in noise.  IEEE Trans Biomed Eng. 2006;  53 (12 Pt 2) 2598-2601
  • 16 Spitzer S, Liss J, Spahr T, Dorman M, Lansford K. The use of fundamental frequency for lexical segmentation in listeners with cochlear implants.  J Acoust Soc Am. 2009;  125 (6) EL236-EL241
  • 17 Shannon R V, Zeng F G, Kamath V, Wygonski J, Ekelid M. Speech recognition with primarily temporal cues.  Science. 1995;  270 (5234) 303-304
  • 18 Spahr A J, Dorman M F, Loiselle L H. Performance of patients using different cochlear implant systems: effects of input dynamic range.  Ear Hear. 2007;  28 (2) 260-275
  • 19 Zue V. The use of speech knowledge in automatic speech recognition.  Proc IEEE. 1985;  73 1602-1615
  • 20 Ching T YC, Psarros C, Hill M, Dillon H, Incerti P. Should children who use cochlear implants wear hearing aids in the opposite ear?.  Ear Hear. 2001;  22 (5) 365-380
  • 21 Ching T YC, Psarros C, Hill M. Hearing aid benefit for children who switched from the SPEAK to the ACE strategy in their contralateral Nucleus 24 cochlear implant system.  Aust N Z J Audiol. 2000;  22 (2) 123-132
  • 22 Miller G A, Nicely P E. An analysis of perceptual confusions among some English consonants.  J Acoust Soc Am. 1955;  27 (2) 338-352
  • 23 Wong A OC, Wong L LN. Tone perception of Cantonese-speaking prelingually hearing-impaired children with cochlear implants.  Otolaryngol Head Neck Surg. 2004;  130 (6) 751-758
  • 24 Lee K YS, van Hasselt C A, Chiu S N, Cheung D MC. Cantonese tone perception ability of cochlear implant children in comparison with normal-hearing children.  Int J Pediatr Otorhinolaryngol. 2002;  63 (2) 137-147
  • 25 Han D, Liu B, Zhou N et al. Lexical tone perception with HiResolution and HiResolution 120 sound-processing strategies in pediatric Mandarin-speaking cochlear implant users.  Ear Hear. 2009;  30 (2) 169-177
  • 26 Lee K YS, van Hasselt C A, Tong M CF. Tone perception in Cantonese-speaking children with hearing aids.  Ann Otol Rhinol Laryngol. 2008;  117 (4) 313-316
  • 27 Ching T YC. Lipreading Cantonese with voice pitch.  J Acoust Soc Am. 1985;  77 S539
  • 28 Campisi P, Low A, Papsin B, Mount R J, Cohen-Kerem R, Harrison R. Acoustic analysis of the voice in pediatric cochlear implant recipients: a longitudinal study.  Laryngoscope. 2005;  115 (6) 1046-1050
  • 29 Holler T, Campisi P, Allegro J et al. Abnormal voicing in children using cochlear implants.  Arch Otolaryngol Head Neck Surg. 2010;  136 (1) 17-21
  • 30 Lee K YS, Tong M CF, van Hasselt C A. The tone production performance of children receiving cochlear implants at different ages.  Ear Hear. 2007;  28 (2 Suppl) 34S-37S
  • 31 Fourcin A, Abberton E, Richardson K, Shaw T. Aspects of voice measurement with young users of cochlear implants.  Semin Hear. 2011;  32 42-52
  • 32 Blamey P J, Dooley G J, James C J, Parisi E S. Monaural and binaural loudness measures in cochlear implant users with contralateral residual hearing.  Ear Hear. 2000;  21 (1) 6-17
  • 33 Byrne D, Dillon H. The National Acoustic Laboratories' (NAL) new procedure for selecting the gain and frequency response of a hearing aid.  Ear Hear. 1986;  7 (4) 257-265
  • 34 Byrne D, Parkinson A, Newall P. Hearing aid gain and frequency response requirements for the severely/profoundly hearing impaired.  Ear Hear. 1990;  11 (1) 40-49
  • 35 Ching T YC, Incerti P, Hill M, Brew J. Fitting and evaluating a hearing aid for recipients of a unilateral cochlear implant: the NAL approach.  Hear Rev. 2004;  11 (8) 32
  • 36 Ching T YC, Hill M, Dillon H, Van Wanrooy E. Fitting cochlear implants and hearing aids: the NAL approach Part I. Hearing aid prescription, adjustment, and evaluation.  Hear Rev. 2004;  14-59
  • 37 Ching T YC, Psarros C, Incerti P, Hill M. Management of children using cochlear implants and hearing aids.  The Volta Review. 2003;  103 (1) 39-57
  • 38 Ching T YC, Hill M, Brew J et al. The effect of auditory experience on speech perception, localization, and functional performance of children who use a cochlear implant and a hearing aid in opposite ears.  Int J Audiol. 2005;  44 (12) 677-690

Teresa Y.C ChingPh.D. 

National Acoustic Laboratories, 126 Greville Street

Sydney NSW 2067, Australia

Email: Teresa.Ching@nal.gov.au

    >