Horm Metab Res 2011; 43(5): 306-311
DOI: 10.1055/s-0031-1271817
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Reduced Proliferation and a High Apoptotic Frequency of Pancreatic Beta Cells Contribute to Genetically-determined Diabetes Susceptibility of db/db BKS Mice

R. Puff1 , P. Dames1 , M. Weise1 , 2 , B. Göke1 , J. Seissler2 , K. G. Parhofer1 , A. Lechner1 , 2
  • 1Ludwig-Maximilians-Universität, Klinikum Großhadern, Medizinische Klinik 2, München, Germany
  • 2Ludwig-Maximilians-Universität, Medizinische Klinik – Innenstadt, München, Germany
Further Information

Publication History

received 15.11.2010

accepted 02.02.2011

Publication Date:
16 March 2011 (online)

Abstract

Leptin receptor-deficient db/db mice are a commonly used research model and it is known that the genetic background, on which the mutation is bred, modulates the phenotype. While diabetes-resistant strains sustain near normal glycemia and hyperinsulinemia, susceptible backgrounds develop overt hyperglycemia and islet involution. We hypothesized that genetically-determined differences in the proliferative capacity and the apoptotic frequency of pancreatic beta cells contribute to this phenotypic disparity. We studied C57BLKS/J (BKS; diabetes-susceptible) and C57BL/6 (B6; diabetes-resistant) db/db mice and heterozygous controls from 5 to 12 weeks of age. Body weight, fasting blood glucose, plasma insulin, HOMA-IR, alpha cell mass, beta cell mass, proliferation and apoptosis were measured. Comparable insulin resistance developed in the 2 db/db strains, which was well compensated for on both genetic backgrounds until 7 weeks of age. As expected, the BKS mice became hyperglycemic at 9 weeks. Beta cell proliferation was initially increased in both db/db strains but decreased rapidly in the BKS mice with advancing age. The rate of beta cell apoptosis was already higher in prediabetic BKS mice than in their B6 counterparts. Beta cell mass increased continuously in the B6 strain until 12 weeks of age, but declined from 7 weeks onwards in BKS. An age-dependent decline of beta cell proliferation and an increased rate of beta cell apoptosis already in the prediabetic state probably contribute to the diabetes susceptibility of db/db BKS mice. These factors could also play a role in the genetic predisposition for type 2 diabetes in humans.

References

  • 1 O’Rahilly S. Human genetics illuminates the paths to metabolic disease.  Nature. 2009;  462 307-314
  • 2 Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutation in the mouse.  Science. 1966;  153 1127-1128
  • 3 Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM. Abnormal splicing of the leptin receptor in diabetic mice.  Nature. 1996;  379 632-635
  • 4 Coleman DL, Hummel KP. Studies with the mutation, diabetes, in the mouse.  Diabetologia. 1967;  3 238-248
  • 5 Baetens D, Stefan Y, Ravazzola M, Malaisse-Lagae F, Coleman DL, Orci L. Alteration of islet cell populations in spontaneously diabetic mice.  Diabetes. 1978;  27 1-7
  • 6 Hummel KP, Coleman DL, Lane PW. The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains.  Biochem Genet. 1972;  7 1-13
  • 7 Chick WL, Like AA. Studies in the diabetic mutant mouse. 3. Physiological factors associated with alterations in beta cell proliferation.  Diabetologia. 1970;  6 243-251
  • 8 Like AA, Chick WL. Studies in the diabetic mutant mouse. II. Electron microscopy of pancreatic islets.  Diabetologia. 1970;  6 216-242
  • 9 Rankin MM, Kushner JA. Adaptive beta-cell proliferation is severely restricted with advanced age.  Diabetes. 2009;  58 1365-1372
  • 10 Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y, Hori M. Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity.  Diabetes. 1999;  48 2398-2406
  • 11 Uchida T, Nakamura T, Hashimoto N, Matsuda T, Kotani K, Sakaue H, Kido Y, Hayashi Y, Nakayama KI, White MF, Kasuga M. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice.  Nat Med. 2005;  11 175-182
  • 12 Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S, Polonsky KS. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat.  Diabetes. 1998;  47 358-364
  • 13 Kahn SE, Zraika S, Utzschneider KM, Hull RL. The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality.  Diabetologia. 2009;  52 1003-1012
  • 14 Davis RC, Castellani LW, Hosseini M, Ben-Zee VO, Mao HZ, Weinstein MM, Jung DY, Jun JY, Kim JK, Lusis AJ, Péterfy M. Early hepatic insulin resistance precedes the onset of diabetes in obese C57BLKS-db/db mice.  Diabetes. 2010;  59 1616-1625
  • 15 Donath MY, Gross DJ, Cerasi E, Kaiser N. Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes.  Diabetes. 1999;  48 738-744
  • 16 Pechhold K, Koczwara K, Zhu X, Harrison VS, Walker G, Lee J, Harlan DM. Blood glucose levels regulate pancreatic beta-cell proliferation during experimentally-induced and spontaneous autoimmune diabetes in mice.  PLoS One. 2009;  4 e4827
  • 17 Butler AE, Janson J, Soeller WC, Butler PC. Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid.  Diabetes. 2003;  52 2304-2314
  • 18 Topp BG, Atkinson LL, Finegood DT. Dynamics of insulin sensitivity, -cell function, and -cell mass during the development of diabetes in fa/fa rats.  Am J Physiol Endocrinol Metab. 2007;  293 E1730-E1735
  • 19 Keller MP, Choi Y, Wang P, Davis DB, Rabaglia ME, Oler AT, Stapleton DS, Argmann C, Schueler KL, Edwards S, Steinberg HA, Chaibub Neto E, Kleinhanz R, Turner S, Hellerstein MK, Schadt EE, Yandell BS, Kendziorski C, Attie AD. A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility.  Genome Res. 2008;  18 706-716
  • 20 Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, Segre AV, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Bengtsson Bostrom K, Bravenboer B, Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney AS, Elliott KS, Elliott AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PR, Jorgensen T, Kao WH, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JR, Petersen AK, Platou C, Proenca C, Prokopenko I, Rathmann W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson G, Sparso T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B, Tichet J, Tuomi T, van Dam RM, van Haeften TW, van Herpt T, van Vliet-Ostaptchouk JV, Bragi Walters G, Weedon MN, Wijmenga C, Witteman J, Bergman RN, Cauchi S, Collins FS, Gloyn AL, Gyllensten U, Hansen T, Hide WA, Hitman GA, Hofman A, Hunter DJ, Hveem K, Laakso M, Mohlke KL, Morris AD, Palmer CN, Pramstaller PP, Rudan I, Sijbrands E, Stein LD, Tuomilehto J, Uitterlinden A, Walker M, Wareham NJ, Watanabe RM, Abecasis GR, Boehm BO, Campbell H, Daly MJ, Hattersley AT, Hu FB, Meigs JB, Pankow JS, Pedersen O, Wichmann HE, Barroso I, Florez JC, Frayling TM, Groop L, Sladek R, Thorsteinsdottir U, Wilson JF, Illig T, Froguel P, van Duijn CM, Stefansson K, Altshuler D, Boehnke M, McCarthy MI. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis.  Nat Genet. 2010;  42 579-589
  • 21 Bursch W, Paffe S, Putz B, Barthel G, Schulte-Hermann R. Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats.  Carcinogenesis. 1990;  11 847-853
  • 22 O’Brien BA, Harmon BV, Cameron DP, Allan DJ. Apoptosis is the mode of beta-cell death responsible for the development of IDDM in the nonobese diabetic (NOD) mouse.  Diabetes. 1997;  46 750-757
  • 23 Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes.  Diabetologia. 2007;  50 752-763
  • 24 Kaku K, Province M, Permutt MA. Genetic analysis of obesity-induced diabetes associated with a limited capacity to synthesize insulin in C57BL/KS mice: evidence for polygenic control.  Diabetologia. 1989;  32 636-643
  • 25 Davis RC, Schadt EE, Cervino AC, Peterfy M, Lusis AJ. Ultrafine mapping of SNPs from mouse strains C57BL/6J, DBA/2J, and C57BLKS/J for loci contributing to diabetes and atherosclerosis susceptibility.  Diabetes. 2005;  54 1191-1199
  • 26 Mao HZ, Roussos ET, Peterfy M. Genetic analysis of the diabetes-prone C57BLKS/J mouse strain reveals genetic contribution from multiple strains.  Biochim Biophys Acta. 2006;  1762 440-446

Correspondence

A. Lechner

Medizinische Klinik – Innenstadt

Ziemssenstraße 1

80336 München

Germany

Phone: +49/89/5160 2185

Fax: +49/89/5160 3374

Email: andreas.lechner@med.uni-muenchen.de

    >