Subscribe to RSS
DOI: 10.1055/s-0030-1270527
© Georg Thieme Verlag KG Stuttgart · New York
Menin Interacts with β-Catenin in Osteoblast Differentiation
Publication History
received 06.09.2010
accepted 20.12.2010
Publication Date:
24 January 2011 (online)

Abstract
Menin promotes the commitment of pluripotent mesenchymal stem cells to the osteoblast lineage by interacting with the BMP-2 signaling molecules Smad1/5, and Runx2. However, the relationship between menin and the Wnt-β-catenin pathway in bone is unclear. Reduction of menin expression by transfection of a menin antisense construct did not alter the levels of β-catenin in mouse mesenchymal C2C12 and osteoblastic MC3T3-E1 cells. However, menin co-immunoprecipitated with β-catenin as well as LEF-1 in C2C12 and MC3T3-E1 cells. Reduction of menin expression by antisense menin transfection antagonized β-catenin-induced transcriptional activity of the pGL3-OT luciferase reporter construct in C2C12 and MC3T3-E1 cells. Antisense menin transfection antagonized the BMP-2 and β-catenin-stimulated increases in Runx2 and alkaline phosphatase levels in C2C12 cells. The data show that menin interacts with β-catenin in mouse mesenchymal and osteoblastic cells, and suggest that the interaction is important for osteoblast differentiation.
Key words
menin - β-catenin - osteoblast
References
- 1
Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, Debelenko LV, Zhuang Z, Lubensky IA, Liotta LA, Crabtree JS, Wang Y, Roe BA, Weisemann J, Boguski MS, Agarwal SK, Kester MB, Kim YS, Heppner C, Dong Q, Spiegel AM, Burns AL, Marx SJ.
Positional cloning of the gene for multiple endocrine neoplasia-type 1.
Science.
1997;
276
404-407
MissingFormLabel
- 2
Hendy GN, Kaji H, Sowa H, Lebrun JJ, Canaff L.
Menin and TGF-β superfamily member signaling via the Smad pathway in pituitary, parathyroid
and osteoblast.
Horm Metab Res.
2005;
37
375-379
MissingFormLabel
- 3
Kaji H, Canaff L, Lebrun JJ, Goltzman D, Hendy GN.
Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor
type beta signaling.
Proc Natl Acad Sci USA.
2001;
98
3837-3842
MissingFormLabel
- 4
Kaji H, Canaff L, Goltzman D, Hendy GN.
Cell cycle regulation of menin expression.
Cancer Res.
1999;
59
5097-5101
MissingFormLabel
- 5
Sowa H, Kaji H, Kitazawa R, Kitazawa S, Tsukamoto T, Yano S, Tsukada T, Canaff L, Hendy GN, Sugimoto T, Chihara K.
Menin inactivation leads to loss of transforming growth factor beta inhibition of
parathyroid cell proliferation and parathyroid hormone secretion.
Cancer Res.
2004;
64
2222-2228
MissingFormLabel
- 6
Chandrasekharappa SC, Teh BT.
Functional studies of the MEN1 gene.
J Intern Med.
2003;
253
606-615
MissingFormLabel
- 7
Stewart C, Parente F, Piehl F, Farnebo F, Quincey D, Sillins G, Bergman L, Carle GF, Lemmens I, Grimmond S, Xian CZ, Khodei S, Teh BT, Lagercrantz J, Siggers P, Calender A, Van de Vem V, Kas K, Weber G, Hayward N, Gaudray P, Larsson C.
Characterization of the mouse Men1 gene and its expression during development.
Oncogene.
1998;
17
2485-2493
MissingFormLabel
- 8
Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA, Lorang D, Libutti SK, Chandrasekharappa SC, Marx SJ, Spiegel AM, Collins FS.
A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine
tumors.
Proc Natl Acad Sci USA.
2001;
98
1118-1123
MissingFormLabel
- 9
Sowa H, Kaji H, Canaff L, Hendy GN, Tsukamoto T, Yamaguchi T, Miyazono K, Sugimoto T, Chihara K.
Inactivation of menin, the product of the multiple endocrine neoplasia type 1 gene,
inhibits the commitment of multipotential mesenchymal stem cells into the osteoblast
lineage.
J Biol Chem.
2003;
278
21058-21069
MissingFormLabel
- 10
Sowa H, Kaji H, Hendy GN, Canaff L, Komori T, Sugimoto T, Chihara K.
Menin is required for bone morphogenetic protein 2- and transforming growth factor
β-regulated osteoblastic differentiation through interaction with Smads and Runx2.
J Biol Chem.
2004;
279
40267-40275
MissingFormLabel
- 11
Naito J, Kaji H, Sowa H, Hendy GN, Sugimoto T, Chihara K.
Menin suppresses osteoblast differentiation by antagonizing the AP-1 factor, JunD.
J Biol Chem.
2005;
280
4785-4791
MissingFormLabel
- 12
Krishnan V, Bryant HU, MacDougald OA.
Regulation of bone mass by Wnt signaling.
J Clin Invest.
2006;
116
1202-1209
MissingFormLabel
- 13
Tobimatsu T, Kaji H, Sowa H, Naito J, Hendy GN, Sugimoto T, Chihara K.
Parathyroid hormone increases β-catenin levels through Smad3 in mouse osteoblastic
cells.
Endocrinology.
2006;
147
2583-2590
MissingFormLabel
- 14
Inoue Y, Canaff L, Hendy GN, Hisa I, Sugimoto T, Chihara K, Kaji H.
Role of Smad3, acting independently of transforming growth factor-β, in the early
induction of Wnt-β-catenin signaling by parathyroid hormone in mouse osteoblastic
cells.
J Cell Biochem.
2009;
108
285-294
MissingFormLabel
- 15
Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW.
Serine phosphorylation-regulated ubiquitination and degradation of β-catenin.
J Biol Chem.
1997;
272
24753-24738
MissingFormLabel
- 16
Kaji H, Naito J, Inoue Y, Sowa H, Sugimoto T, Chihara K.
Statin suppresses apoptosis in osteoblastic cells: role of transforming growth factor-β-Smad3
pathway.
Horm Metab Res.
2008;
40
746-751
MissingFormLabel
- 17
Engleka KA, Wu M, Zhang M, Antonucci NB, Epstein JA.
Menin is required in cranial neural crest for pathogenesis and perinatal viability.
Dev Biol.
2007;
311
524-537
MissingFormLabel
- 18
Aziz A, Miyake T, Engleka KA, Epstein JA, Mcdermott JC.
Menin expression modulates mesenchymal cell commitment to the myogenic and osteogenic
lineages.
Dev Biol.
2009;
332
116-130
MissingFormLabel
- 19
Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S.
BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a
Wnt autocrine loop.
J Bone Miner Res.
2003;
18
1842-1853
MissingFormLabel
- 20
Chen Y, Whetstone HC, Youn A, Nadesan P, Chow EC, Lin AC, Alman BA.
β-Catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce
new bone formation.
J Biol Chem.
2007;
282
526-533
MissingFormLabel
- 21
Reinhold MI, Naski MC.
Direct interactions of Runx2 and canonical Wnt signaling induce FGF18.
J Biol Chem.
2007;
282
3653-3663
MissingFormLabel
- 22
Chen G, Jingbo AJ, Wang M, Farley S, Lee LC, Sawicki MP.
Menin promotes the Wnt signaling pathway in pancreatic endocrine cells.
Mol Cancer Res.
2008;
6
1894-1907
MissingFormLabel
- 23
Cao Y, Liu R, Jiang X, Lu J, Jiang J, Zhang C, Li X, Ning G.
Nuclear-cytoplasmic shuttling of menin regulates translocation of β-catenin.
Mol Cell Biol.
2009;
29
5477-5487
MissingFormLabel
- 24
Bertolino P, Tong WM, Herrerra PL, Casse H, Zhang CX, Wang ZQ.
Pancreatic β-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1)
gene causes full penetrance of insulinoma development in mice.
Cancer Res.
2003;
63
4836-4841
MissingFormLabel
Correspondence
H. Kaji
Division of Diabetes,
Metabolism and Endocrinology
Department of Internal
Medicine and Division of
Cellular and Molecular Medicine
Kobe University Graduate
School of Medicine
7-5-2 Kusunoki-cho
650-0017 Chuo-ku, Kobe
Japan
Phone: +81/78/382 5861
Fax: +81/78/382 2080
Email: hiroshik@med.kobe-u.ac.jp