Abstract
Thiazolidinediones (TZDs) are used as antidiabetic therapy. The purpose of the present
study was to examine whether the TZD rosiglitazone has direct actions on pancreatic
beta-cells that contribute to its overall effects. Effects of acute and prolonged
(48 h) exposure to rosiglitazone, as a model glitazone compound, were assessed in
clonal pancreatic BRIN-BD11 beta-cells maintained in standard, glucotoxic and lipotoxic
cultures. In acute 20-min incubations, rosiglitazone (0.2–100 μM) did not alter basal
or glucose-stimulated insulin secretion. However, rosiglitazone (6.25 μM) enhanced
(p<0.001) the acute insulinotropic action of GLP-1. Prolonged exposure to 6.25 μM
rosiglitazone in standard media had no effect on cell viability or cellular insulin
content, but slightly reduced the insulin secretory response to glucose and alanine
(p<0.05). Prolonged (48 h) exposure to glucotoxic or lipotoxic conditions reduced
beta-cell viability (p<0.05), cellular insulin content (p<0.001 and p<0.05, respectively),
and insulin release in response to glucose and a range of secretagogues. The adverse
effect of lipotoxicity on beta-cell viability was prevented by concomitant exposure
to 6.25 μM rosiglitazone. Culture with 6.25 μM rosiglitazone further decreased acute
insulin release under glucotoxic conditions. However, when insulin secretion was expressed
as percentage cellular insulin content, rosiglitazone (6.25 μM) significantly improved
many of the adverse effects of gluco- and lipotoxic conditions on insulin secretory
responsiveness. The results suggest that despite decrease in cellular insulin content
TZDs exert direct beneficial effects on beta-cell viability and function during gluco-
or lipotoxicity.
Key words
insulin secretion - rosiglitazone - beta-cell - AMPK - PPAR-γ
References
1
Stumvoll M.
Thiazolidinediones – some recent developments.
Expert Opin Investig Drugs.
2003;
12
1179-1187
2
Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA.
An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated
receptor gamma (PPAR gamma).
J Biol Chem.
1995;
270
12953-12956
3
Ye P, Fang H, Zhou X, He YL, Liu YX.
Effect of peroxisome proliferator-activated receptor activators on tumor necrosis
factor-alpha expression in neonatal rat cardiac myocytes.
Chin Med Sci J.
2004;
19
243-247
4
Neschen S, Morino K, Dong J, Wang-Fischer Y, Cline GW, Romanelli AJ, Rossbacher JC,
Moore IK, Regittnig W, Munoz DS, Kim JH, Shulman GI.
n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated
receptor-alpha-dependent manner.
Diabetes.
2007;
56
1034-1041
5
Wu HT, Chen W, Cheng KC, Yeh CH, Shen KH, Cheng JT.
Indomethacin activates peroxisome proliferator-activated receptor γ to improve insulin
resistance in cotton pellet granuloma model.
Horm Metab Res.
2010;
42
775-780
6
Campbell IW, Mariz S.
Beta-cell preservation with thiazolidinediones.
Diabetes Res Clin Pract.
2007;
76
163-176
7
Dubois M, Pattou F, Kerr-Conte J, Gmyr V, Vandewalle B, Desreumaux P, Auwerx J, Schoonjans K,
Lefebvre J.
Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in normal
human pancreatic islet cells.
Diabetologia.
2000;
43
1165-1169
8
Fryer LG, Parbu-Patel A, Carling D.
The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein
kinase through distinct signaling pathways.
J Biol Chem.
2002;
277
25226-25232
9
LeBrasseur NK, Kelly M, Tsao TS, Farmer SR, Saha AK, Ruderman NB, Tomas E.
Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian
tissues.
Am J Physiol Endocrinol Metab.
2006;
291
E175-E181
10
Wang X, Zhou L, Shao L, Qian L, Fu X, Li G, Luo T, Gu Y, Li F, Li J, Zheng S, Luo M.
Troglitazone acutely activates AMP-activated protein kinase and inhibits insulin secretion
from beta cells.
Life Sci.
2007;
81
160-165
11
Richards SK, Parton LE, Leclerc I, Rutter GA, Smith RM.
Over-expression of AMP-activated protein kinase impairs pancreatic beta-cell function
in vivo.
J Endocrinol.
2005;
187
225-235
12
Tsuboi T, da Silva Xavier G, Leclerc I, Rutter GA.
5′-AMP-activated protein kinase controls insulin-containing secretory vesicle dynamics.
J Biol Chem.
2003;
278
52042-52051
13
Sun G, Tarasov AI, McGinty J, McDonald A, da Silva Xavier G, Gorman T, Marley A, French PM,
Parker H, Gribble F, Reimann F, Prendiville O, Carzaniga R, Viollet B, Leclerc I,
Rutter GA.
Ablation of AMP-activated protein kinase alpha1 and alpha2 from mouse pancreatic beta
cells and RIP2. Cre neurons suppresses insulin release in vivo.
Diabetologia.
2010;
53
924-936
14
Richardson H, Campbell SC, Smith SA, Macfarlane WM.
Effects of rosiglitazone and metformin on pancreatic beta cell gene expression.
Diabetologia.
2006;
49
685-696
15
Lamontagne J, Pepin E, Peyot ML, Joly E, Ruderman NB, Poitout V, Madiraju SR, Nolan CJ,
Prentki M.
Pioglitazone acutely reduces insulin secretion and causes metabolic deceleration of
the pancreatic beta-cell at submaximal glucose concentrations.
Endocrinol.
2009;
150
3465-3474
16
Buettner R, Bettermann I, Hechtl C, Gäbele E, Hellerbrand C, Schölmerich J, Bollheimer LC.
Dietary folic acid activates AMPK and improves insulin resistance and hepatic inflammation
in dietary rodent models of the metabolic syndrome.
Horm Metab Res.
2010;
42
769-774
17
McClenaghan NH, Barnett CR, Ah-Sing E, Abdel-Wahab YH, O’Harte FP, Yoon TW, Swanston-Flatt SK,
Flatt PR.
Characterization of a novel glucose-responsive insulin-secreting cell line, BRIN-BD11,
produced by electrofusion.
Diabetes.
1996;
45
1132-1140
18
Hamid M, McCluskey JT, McClenaghan NH, Flatt PR.
Comparison of the secretory properties of four insulin-secreting cell lines.
Endocr Res.
2002;
28
35-47
19
Flatt PR, Bailey CJ.
Abnormal plasma glucose and insulin responses in heterozygous (ob/+) mice.
Diabetologia.
1981;
20
573-577
20
Diani AR, Sawada G, Wyse B, Murray FT, Khan M.
Pioglitazone preserves pancreatic islet structure and insulin secretory function in
three murine models of type 2 diabetes.
Am J Physiol Endocrinol Metab.
2004;
286
E116-E122
21
Kawasaki F, Matsuda M, Kanda Y, Inoue H, Kaku K.
Structural and functional analysis of pancreatic islets preserved by pioglitazone
in db/db mice.
Am J Physiol Endocrinol Metab.
2005;
288
E510-E518
22
Cox PJ, Ryan DA, Hollis JH, Harris AM, Miller AK, Vousden M, Cowley H.
Absorption, disposition, and metabolism of rosiglitazone, a potent thiazolidinedione
insulin sensitizer, in humans.
Drug Metab Dispos.
2000;
28
772-780
23
Winzell MS, Ahrén B.
G-protein-coupled receptors and islet function-implications for treatment of type
2 diabetes.
Pharmacol Ther.
2007;
116
437-448
24
LeClerc I, Rutter GA.
AMP-activated protein kinase: a new beta-cell glucose sensor?: Regulation by amino
acids and calcium ions.
Diabetes.
2004;
53
S67-S74
25
Green BD, Irwin N, Duffy NA, Gault VA, O’Harte FP, Flatt PR.
Inhibition of dipeptidyl peptidase-IV activity by metformin enhances the antidiabetic
effects of glucagon-like peptide-1.
Eur J Pharmacol.
2006;
547
192-199
26
Derosa G, Maffioli P, Ferrari I, Mereu R, Ragonesi PD, Querci F, Franzetti IG, Gadaleta G,
Ciccarelli L, Piccinni MN, D’Angelo A, Salvadeo SA.
Effects of one year treatment of vildagliptin added to pioglitazone or glimepiride
in poorly controlled type 2 diabetic patients.
Horm Metab Res.
2010;
42
663-669
27
Poitout V, Robertson RP.
Glucolipotoxicity: fuel excess and beta-cell dysfunction.
Endocr Rev.
2008;
29
351-366
28
Lenzen S.
Oxidative stress: the vulnerable beta-cell.
Biochem Soc Trans.
2008;
36
343-347
29
Kanda Y, Shimoda M, Hamamoto S, Tawaramoto K, Kawasaki F, Hashiramoto M, Nakashima K,
Matsuki M, Kaku K.
Molecular mechanism by which pioglitazone preserves pancreatic beta-cells in obese
diabetic mice: evidence for acute and chronic actions as a PPARgamma agonist.
Am J Physiol Endocrinol Metab.
2010;
298
E278-E286
30
Blumentrath J, Neye H, Verspohl EJ.
Effects of retinoids and thiazolidinediones on proliferation, insulin release, insulin
mRNA, GLUT 2 transporter protein and mRNA of INS-1 cells.
Cell Biochem Funct.
2001;
19
159-169
31
Schinner S, Krätzner R, Baun D, Dickel C, Blume R, Oetjen E.
Inhibition of human insulin gene transcription by peroxisome proliferator-activated
receptor gamma and thiazolidinedione oral antidiabetic drugs.
Br J Pharmacol.
2009;
157
736-745
32
Gupta D, Jetton TL, Mortensen RM, Duan SZ, Peshavaria M, Leahy JL.
In vivo and in vitro studies of a functional peroxisome proliferator-activated receptor
gamma response element in the mouse pdx-1 promoter.
J Biol Chem.
2008;
21: 283
32462-32470
33
Zeender E, Maedler K, Bosco D, Berney T, Donath MY, Halban PA.
Pioglitazone and sodium salicylate protect human beta-cells against apoptosis and
impaired function induced by glucose and interleukin-1beta.
J Clin Endocrinol Metab.
2004;
89
5059-5066
34
Evans-Molina C, Robbins RD, Kono T, Tersey SA, Vestermark GL, Nunemaker CS, Garmey JC,
Deering TG, Keller SR, Maier B, Mirmira RG.
Peroxisome proliferator-activated receptor gamma activation restores islet function
in diabetic mice through reduction of endoplasmic reticulum stress and maintenance
of euchromatin structure.
Mol Cell Biol.
2009;
29
2053-2067
35
Cnop M, Hannaert JC, Pipeleers DG.
Troglitazone does not protect rat pancreatic beta cells against free fatty acid-induced
cytotoxicity.
Biochem Pharmacol.
2002;
63
1281-1285
36
Kim SH, Abbasi F, Chu JW, McLaughlin TL, Lamendola C, Polonsky KS, Reaven GM.
Rosiglitazone reduces glucose-stimulated insulin secretion rate and increases insulin
clearance in nondiabetic, insulin-resistant individuals.
Diabetes.
2005;
54
2447-2452
Correspondence
Dr. N. Irwin
SAAD Centre for Pharmacy and
Diabetes
University of Ulster
Coleraine
BT52 1SA Northern Ireland
UK
Phone: +44/2870/324 574
Fax: +44/2870/323 939
Email: n.irwin@ulster.ac.uk