Semin Liver Dis 2010; 30(4): 378-390
DOI: 10.1055/s-0030-1267538
© Thieme Medical Publishers

The Role of Lipid Metabolism in the Pathogenesis of Alcoholic and Nonalcoholic Hepatic Steatosis

Margaret S. Sozio1 , 2 , Suthat Liangpunsakul1 , 2 , David Crabb1 , 2
  • 1Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Clarian Digestive Disease Center, Indianapolis, Indiana
  • 2Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
Further Information

Publication History

Publication Date:
19 October 2010 (online)

ABSTRACT

Hepatic steatosis is now understood to play an important role in the development of advanced liver disease. Alcoholic and nonalcoholic fatty liver each begin with the accumulation of lipids in the liver. Lipid accumulation in the liver can occur through maladaptations of fatty acid uptake (either through dietary sources or from fat tissue), fatty acid synthesis, fatty acid oxidation, or export of lipids from the liver. Alterations in mechanisms of fatty acid uptake through both dietary uptake and lipolysis in adipose tissue can contribute to the pathogenesis of both disorders, as can effects on fatty acid transporters. Effects on lipid synthesis in alcoholic and nonalcoholic fatty liver involve the endoplasmic reticulum (ER) stress response, homocysteine metabolism pathway, and different transcription factors regulating genes in the lipid synthesis pathway. Fatty acid oxidation, through effects on AMP-activated protein kinase (AMPK), adiponectin, peroxisome proliferator-activated receptors (PPARs), and mitochondrial function is predominantly altered in alcoholic liver disease, although studies suggest that activation of this pathway may improve nonalcoholic fatty liver disease. Finally, changes in fatty acid export, through effects on apolipoprotein B and microsomal transport protein are seen in both diseases. Thus, the similarities and differences in the mechanism of fat accumulation in the liver in nonalcoholic and alcoholic liver disease are explored in detail.

REFERENCES

  • 1 Donnelly K L, Smith C I, Schwarzenberg S J, Jessurun J, Boldt M D, Parks E J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.  J Clin Invest. 2005;  115(5) 1343-1351
  • 2 Westerbacka J, Lammi K, Häkkinen A M et al.. Dietary fat content modifies liver fat in overweight nondiabetic subjects.  J Clin Endocrinol Metab. 2005;  90(5) 2804-2809
  • 3 Towle H C, Kaytor E N, Shih H M. Regulation of the expression of lipogenic enzyme genes by carbohydrate.  Annu Rev Nutr. 1997;  17 405-433
  • 4 Lê K A, Bortolotti M. Role of dietary carbohydrates and macronutrients in the pathogenesis of nonalcoholic fatty liver disease.  Curr Opin Clin Nutr Metab Care. 2008;  11(4) 477-482
  • 5 Lieber C S, DeCarli L M. Quantitative relationship between amount of dietary fat and severity of alcoholic fatty liver.  Am J Clin Nutr. 1970;  23(4) 474-478
  • 6 You M, Considine R V, Leone T C, Kelly D P, Crabb D W. Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice.  Hepatology. 2005;  42(3) 568-577
  • 7 Mezey E. Dietary fat and alcoholic liver disease.  Hepatology. 1998;  28(4) 901-905
  • 8 Nanji A A. Role of different dietary fatty acids in the pathogenesis of experimental alcoholic liver disease.  Alcohol. 2004;  34(1) 21-25
  • 9 Ronis M J, Korourian S, Zipperman M, Hakkak R, Badger T M. Dietary saturated fat reduces alcoholic hepatotoxicity in rats by altering fatty acid metabolism and membrane composition.  J Nutr. 2004;  134(4) 904-912
  • 10 Pessayre D, Fromenty B. NASH: a mitochondrial disease.  J Hepatol. 2005;  42(6) 928-940
  • 11 Capeau J. Insulin resistance and steatosis in humans.  Diabetes Metab. 2008;  34(6 Pt 2) 649-657
  • 12 de Almeida I T, Cortez-Pinto H, Fidalgo G, Rodrigues D, Camilo M E. Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis.  Clin Nutr. 2002;  21(3) 219-223
  • 13 Chalasani N, Deeg M A, Persohn S, Crabb D W. Metabolic and anthropometric evaluation of insulin resistance in nondiabetic patients with nonalcoholic steatohepatitis.  Am J Gastroenterol. 2003;  98(8) 1849-1855
  • 14 Navder K P, Baraona E, Lieber C S. Polyenylphosphatidylcholine attenuates alcohol-induced fatty liver and hyperlipemia in rats.  J Nutr. 1997;  127(9) 1800-1806
  • 15 Lavoie J M, Gauthier M S. Regulation of fat metabolism in the liver: link to non-alcoholic hepatic steatosis and impact of physical exercise.  Cell Mol Life Sci. 2006;  63(12) 1393-1409
  • 16 Zhou J, Febbraio M, Wada T et al.. Hepatic fatty acid transporter CD36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis.  Gastroenterology. 2008;  134(2) 556-567
  • 17 Greco D, Kotronen A, Westerbacka J et al.. Gene expression in human NAFLD.  Am J Physiol Gastrointest Liver Physiol. 2008;  294(5) G1281-G1287
  • 18 Doege H, Baillie R A, Ortegon A M et al.. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis.  Gastroenterology. 2006;  130(4) 1245-1258
  • 19 Newberry E P, Xie Y, Kennedy S et al.. Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene.  J Biol Chem. 2003;  278(51) 51664-51672
  • 20 Newberry E P, Xie Y, Kennedy S M, Luo J, Davidson N O. Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice.  Hepatology. 2006;  44(5) 1191-1205
  • 21 Xu A, Wang Y, Keshaw H, Xu L Y, Lam K S, Cooper G J. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice.  J Clin Invest. 2003;  112(1) 91-100
  • 22 Sozio M, Crabb D W. Alcohol and lipid metabolism.  Am J Physiol Endocrinol Metab. 2008;  295(1) E10-E16
  • 23 Ji C, Kaplowitz N. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice.  Gastroenterology. 2003;  124(5) 1488-1499
  • 24 Coll O, Colell A, García-Ruiz C, Kaplowitz N, Fernández-Checa J C. Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion.  Hepatology. 2003;  38(3) 692-702
  • 25 Ji C. Dissection of endoplasmic reticulum stress signaling in alcoholic and non-alcoholic liver injury.  J Gastroenterol Hepatol. 2008;  23(Suppl 1) S16-S24
  • 26 Chalasani N, Deeg M A, Crabb D W. Systemic levels of lipid peroxidation and its metabolic and dietary correlates in patients with nonalcoholic steatohepatitis.  Am J Gastroenterol. 2004;  99(8) 1497-1502
  • 27 Wang D, Wei Y, Pagliassotti M J. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis.  Endocrinology. 2006;  147(2) 943-951
  • 28 Borradaile N M, Han X, Harp J D, Gale S E, Ory D S, Schaffer J E. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death.  J Lipid Res. 2006;  47(12) 2726-2737
  • 29 Du K, Herzig S, Kulkarni R N, Montminy M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver.  Science. 2003;  300(5625) 1574-1577
  • 30 Kaplowitz N, Than T A, Shinohara M, Ji C. Endoplasmic reticulum stress and liver injury.  Semin Liver Dis. 2007;  27(4) 367-377
  • 31 Ozcan U, Cao Q, Yilmaz E et al.. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes.  Science. 2004;  306(5695) 457-461
  • 32 Ozcan U, Yilmaz E, Ozcan L et al.. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes.  Science. 2006;  313(5790) 1137-1140
  • 33 Nakatani Y, Kaneto H, Kawamori D et al.. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes.  J Biol Chem. 2005;  280(1) 847-851
  • 34 Barak A J, Beckenhauer H C, Junnila M, Tuma D J. Dietary betaine promotes generation of hepatic S-adenosylmethionine and protects the liver from ethanol-induced fatty infiltration.  Alcohol Clin Exp Res. 1993;  17(3) 552-555
  • 35 Barak A J, Beckenhauer H C, Tuma D J, Badakhsh S. Effects of prolonged ethanol feeding on methionine metabolism in rat liver.  Biochem Cell Biol. 1987;  65(3) 230-233
  • 36 Halsted C H, Villanueva J, Chandler C J et al.. Ethanol feeding of micropigs alters methionine metabolism and increases hepatocellular apoptosis and proliferation.  Hepatology. 1996;  23(3) 497-505
  • 37 Trimble K C, Molloy A M, Scott J M, Weir D G. The effect of ethanol on one-carbon metabolism: increased methionine catabolism and lipotrope methyl-group wastage.  Hepatology. 1993;  18(4) 984-989
  • 38 Villanueva J A, Halsted C H. Hepatic transmethylation reactions in micropigs with alcoholic liver disease.  Hepatology. 2004;  39(5) 1303-1310
  • 39 Ji C, Deng Q, Kaplowitz N. Role of TNF-alpha in ethanol-induced hyperhomocysteinemia and murine alcoholic liver injury.  Hepatology. 2004;  40(2) 442-451
  • 40 Esfandiari F, Villanueva J A, Wong D H, French S W, Halsted C H. Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs.  Am J Physiol Gastrointest Liver Physiol. 2005;  289(1) G54-G63
  • 41 Esfandiari F, You M, Villanueva J A, Wong D H, French S W, Halsted C H. S-adenosylmethionine attenuates hepatic lipid synthesis in micropigs fed ethanol with a folate-deficient diet.  Alcohol Clin Exp Res. 2007;  31(7) 1231-1239
  • 42 Song Z, Deaciuc I, Zhou Z et al.. Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis.  Am J Physiol Gastrointest Liver Physiol. 2007;  293(4) G894-G902
  • 43 Hirsch S, Poniachick J, Avendaño M et al.. Serum folate and homocysteine levels in obese females with non-alcoholic fatty liver.  Nutrition. 2005;  21(2) 137-141
  • 44 Gulsen M, Yesilova Z, Bagci S et al.. Elevated plasma homocysteine concentrations as a predictor of steatohepatitis in patients with non-alcoholic fatty liver disease.  J Gastroenterol Hepatol. 2005;  20(9) 1448-1455
  • 45 Foufelle F, Ferré P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c.  Biochem J. 2002;  366(Pt 2) 377-391
  • 46 Postic C, Girard J. The role of the lipogenic pathway in the development of hepatic steatosis.  Diabetes Metab. 2008;  34(6 Pt 2) 643-648
  • 47 Shimano H, Horton J D, Hammer R E, Shimomura I, Brown M S, Goldstein J L. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a.  J Clin Invest. 1996;  98(7) 1575-1584
  • 48 Endo M, Masaki T, Seike M, Yoshimatsu H. TNF-alpha induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c).  Exp Biol Med (Maywood). 2007;  232(5) 614-621
  • 49 You M, Matsumoto M, Pacold C M, Cho W K, Crabb D W. The role of AMP-activated protein kinase in the action of ethanol in the liver.  Gastroenterology. 2004;  127(6) 1798-1808
  • 50 You M, Fischer M, Deeg M A, Crabb D W. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP).  J Biol Chem. 2002;  277(32) 29342-29347
  • 51 Yin H Q, Kim M, Kim J H et al.. Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice.  Toxicol Appl Pharmacol. 2007;  223(3) 225-233
  • 52 Ji C, Chan C, Kaplowitz N. Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model.  J Hepatol. 2006;  45(5) 717-724
  • 53 Shimomura I, Matsuda M, Hammer R E, Bashmakov Y, Brown M S, Goldstein J L. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice.  Mol Cell. 2000;  6(1) 77-86
  • 54 Nakamuta M, Kohjima M, Morizono S et al.. Evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease.  Int J Mol Med. 2005;  16(4) 631-635
  • 55 Kohjima M, Enjoji M, Higuchi N et al.. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease.  Int J Mol Med. 2007;  20(3) 351-358
  • 56 Higuchi N, Kato M, Shundo Y et al.. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease.  Hepatol Res. 2008;  38(11) 1122-1129
  • 57 Caballero F, Fernández A, De Lacy A M, Fernández-Checa J C, Caballería J, García-Ruiz C. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH.  J Hepatol. 2009;  50(4) 789-796
  • 58 Shimomura I, Bashmakov Y, Horton J D. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus.  J Biol Chem. 1999;  274(42) 30028-30032
  • 59 Hotamisligil G S, Shargill N S, Spiegelman B M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance.  Science. 1993;  259(5091) 87-91
  • 60 Wellen K E, Hotamisligil G S. Obesity-induced inflammatory changes in adipose tissue.  J Clin Invest. 2003;  112(12) 1785-1788
  • 61 Tomita K, Tamiya G, Ando S et al.. Tumour necrosis factor alpha signaling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice.  Gut. 2006;  55(3) 415-424
  • 62 Li Z, Yang S, Lin H et al.. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease.  Hepatology. 2003;  37(2) 343-350
  • 63 Foretz M, Pacot C, Dugail I et al.. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose.  Mol Cell Biol. 1999;  19(5) 3760-3768
  • 64 Hegarty B D, Bobard A, Hainault I, Ferré P, Bossard P, Foufelle F. Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c.  Proc Natl Acad Sci U S A. 2005;  102(3) 791-796
  • 65 Azzout-Marniche D, Bécard D, Guichard C, Foretz M, Ferré P, Foufelle F. Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes.  Biochem J. 2000;  350(Pt 2) 389-393
  • 66 Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis.  Biochimie. 2004;  86(11) 839-848
  • 67 Iizuka K, Horikawa Y. ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome.  Endocr J. 2008;  55(4) 617-624
  • 68 Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein.  Proc Natl Acad Sci U S A. 2001;  98(24) 13710-13715
  • 69 Kawaguchi T, Osatomi K, Yamashita H, Kabashima T, Uyeda K. Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase.  J Biol Chem. 2002;  277(6) 3829-3835
  • 70 Kabashima T, Kawaguchi T, Wadzinski B E, Uyeda K. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver.  Proc Natl Acad Sci U S A. 2003;  100(9) 5107-5112
  • 71 Iizuka K, Bruick R K, Liang G, Horton J D, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis.  Proc Natl Acad Sci U S A. 2004;  101(19) 7281-7286
  • 72 Iizuka K, Miller B, Uyeda K. Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice.  Am J Physiol Endocrinol Metab. 2006;  291(2) E358-E364
  • 73 Dentin R, Benhamed F, Hainault I et al.. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice.  Diabetes. 2006;  55(8) 2159-2170
  • 74 Gyamfi M A, Wan Y J. Pathogenesis of alcoholic liver disease: the role of nuclear receptors.  Exp Biol Med (Maywood). 2010;  235(5) 547-560
  • 75 Mitro N, Mak P A, Vargas L et al.. The nuclear receptor LXR is a glucose sensor.  Nature. 2007;  445(7124) 219-223
  • 76 Lehmann J M, Kliewer S A, Moore L B et al.. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway.  J Biol Chem. 1997;  272(6) 3137-3140
  • 77 Janowski B A, Grogan M J, Jones S A et al.. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta.  Proc Natl Acad Sci U S A. 1999;  96(1) 266-271
  • 78 Janowski B A, Willy P J, Devi T R, Falck J R, Mangelsdorf D J. An oxysterol signaling pathway mediated by the nuclear receptor LXR alpha.  Nature. 1996;  383(6602) 728-731
  • 79 Joseph S B, Laffitte B A, Patel P H et al.. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors.  J Biol Chem. 2002;  277(13) 11019-11025
  • 80 Zhang Y, Yin L, Hillgartner F B. SREBP-1 integrates the actions of thyroid hormone, insulin, cAMP, and medium-chain fatty acids on ACCalpha transcription in hepatocytes.  J Lipid Res. 2003;  44(2) 356-368
  • 81 Cha J Y, Repa J J. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR.  J Biol Chem. 2007;  282(1) 743-751
  • 82 Ai Z L, Chen D F. The significance and effects of liver X receptor alpha in nonalcoholic fatty liver disease in rats.  Zhonghua Gan Zang Bing Za Zhi. 2007;  15(2) 127-130
  • 83 Sanyal A J, Campbell-Sargent C, Mirshahi F et al.. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities.  Gastroenterology. 2001;  120(5) 1183-1192
  • 84 Chalasani N, Gorski J C, Asghar M S et al.. Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis.  Hepatology. 2003;  37(3) 544-550
  • 85 Kotronen A, Seppälä-Lindroos A, Vehkavaara S et al.. Liver fat and lipid oxidation in humans.  Liver Int. 2009;  29(9) 1439-1446
  • 86 Bugianesi E, Gastaldelli A, Vanni E et al.. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms.  Diabetologia. 2005;  48(4) 634-642
  • 87 Dobrzyn P, Dobrzyn A, Miyazaki M et al.. Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver.  Proc Natl Acad Sci U S A. 2004;  101(17) 6409-6414
  • 88 Hardie D G, Pan D A. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase.  Biochem Soc Trans. 2002;  30(Pt 6) 1064-1070
  • 89 Muoio D M, Seefeld K, Witters L A, Coleman R A. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target.  Biochem J. 1999;  338(Pt 3) 783-791
  • 90 Tomita K, Tamiya G, Ando S et al.. AICAR, an AMPK activator, has protective effects on alcohol-induced fatty liver in rats.  Alcohol Clin Exp Res. 2005;  29(12, Suppl) 240S-245S
  • 91 Zhou G, Myers R, Li Y et al.. Role of AMP-activated protein kinase in mechanism of metformin action.  J Clin Invest. 2001;  108(8) 1167-1174
  • 92 García-Villafranca J, Guillén A, Castro J. Ethanol consumption impairs regulation of fatty acid metabolism by decreasing the activity of AMP-activated protein kinase in rat liver.  Biochimie. 2008;  90(3) 460-466
  • 93 Liangpunsakul S, Sozio M S, Shin E et al.. Inhibitory effect of ethanol on AMPK phosphorylation is mediated in part through elevated ceramide levels.  Am J Physiol Gastrointest Liver Physiol. 2010;  298(6) G1004-G1012
  • 94 Yang J, Maika S, Craddock L, King J A, Liu Z M. Chronic activation of AMP-activated protein kinase-alpha1 in liver leads to decreased adiposity in mice.  Biochem Biophys Res Commun. 2008;  370(2) 248-253
  • 95 Lin H Z, Yang S Q, Chuckaree C, Kuhajda F, Ronnet G, Diehl A M. Metformin reverses fatty liver disease in obese, leptin-deficient mice.  Nat Med. 2000;  6(9) 998-1003
  • 96 Shang J, Chen L L, Xiao F X, Sun H, Ding H C, Xiao H. Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase.  Acta Pharmacol Sin. 2008;  29(6) 698-706
  • 97 Haukeland J W, Konopski Z, Eggesbø H B et al.. Metformin in patients with non-alcoholic fatty liver disease: a randomized, controlled trial.  Scand J Gastroenterol. 2009;  44(7) 853-860
  • 98 Uygun A, Kadayifci A, Isik A T et al.. Metformin in the treatment of patients with non-alcoholic steatohepatitis.  Aliment Pharmacol Ther. 2004;  19(5) 537-544
  • 99 Zhou M, Xu A, Tam P K et al.. Mitochondrial dysfunction contributes to the increased vulnerabilities of adiponectin knockout mice to liver injury.  Hepatology. 2008;  48(4) 1087-1096
  • 100 Song Z, Zhou Z, Deaciuc I, Chen T, McClain C J. Inhibition of adiponectin production by homocysteine: a potential mechanism for alcoholic liver disease.  Hepatology. 2008;  47(3) 867-879
  • 101 Ajmo J M, Liang X, Rogers C Q, Pennock B, You M. Resveratrol alleviates alcoholic fatty liver in mice.  Am J Physiol Gastrointest Liver Physiol. 2008;  295(4) G833-G842
  • 102 You M, Rogers C Q. Adiponectin: a key adipokine in alcoholic fatty liver.  Exp Biol Med (Maywood). 2009;  234(8) 850-859
  • 103 Maeda N, Takahashi M, Funahashi T et al.. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein.  Diabetes. 2001;  50(9) 2094-2099
  • 104 Kamada Y, Matsumoto H, Tamura S et al.. Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model.  J Hepatol. 2007;  47(4) 556-564
  • 105 Kadowaki T, Yamauchi T, Kubota N. The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS.  FEBS Lett. 2008;  582(1) 74-80
  • 106 Galli A, Pinaire J, Fischer M, Dorris R, Crabb D W. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor alpha is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver.  J Biol Chem. 2001;  276(1) 68-75
  • 107 Nakajima T, Kamijo Y, Tanaka N et al.. Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage.  Hepatology. 2004;  40(4) 972-980
  • 108 Nanji A A, Dannenberg A J, Jokelainen K, Bass N M. Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation.  J Pharmacol Exp Ther. 2004;  310(1) 417-424
  • 109 Fischer M, You M, Matsumoto M, Crabb D W. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice.  J Biol Chem. 2003;  278(30) 27997-28004
  • 110 Bronner M, Hertz R, Bar-Tana J. Kinase-independent transcriptional co-activation of peroxisome proliferator-activated receptor alpha by AMP-activated protein kinase.  Biochem J. 2004;  384(Pt 2) 295-305
  • 111 Leff T. AMP-activated protein kinase regulates gene expression by direct phosphorylation of nuclear proteins.  Biochem Soc Trans. 2003;  31(Pt 1) 224-227
  • 112 Lee S S, Pineau T, Drago J et al.. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators.  Mol Cell Biol. 1995;  15(6) 3012-3022
  • 113 Kersten S, Seydoux J, Peters J M, Gonzalez F J, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting.  J Clin Invest. 1999;  103(11) 1489-1498
  • 114 Nagasawa T, Inada Y, Nakano S et al.. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARdelta agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet.  Eur J Pharmacol. 2006;  536(1-2) 182-191
  • 115 Ip E, Farrell G, Hall P, Robertson G, Leclercq I. Administration of the potent PPARalpha agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice.  Hepatology. 2004;  39(5) 1286-1296
  • 116 Harano Y, Yasui K, Toyama T et al.. Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, reduces hepatic steatosis and lipid peroxidation in fatty liver Shionogi mice with hereditary fatty liver.  Liver Int. 2006;  26(5) 613-620
  • 117 Kallwitz E R, McLachlan A, Cotler S J. Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease.  World J Gastroenterol. 2008;  14(1) 22-28
  • 118 Galli A, Crabb D, Price D et al.. Peroxisome proliferator-activated receptor gamma transcriptional regulation is involved in platelet-derived growth factor-induced proliferation of human hepatic stellate cells.  Hepatology. 2000;  31(1) 101-108
  • 119 Wada S, Yamazaki T, Kawano Y, Miura S, Ezaki O. Fish oil fed prior to ethanol administration prevents acute ethanol-induced fatty liver in mice.  J Hepatol. 2008;  49(3) 441-450
  • 120 Enomoto N, Takei Y, Hirose M et al.. Prevention of ethanol-induced liver injury in rats by an agonist of peroxisome proliferator-activated receptor-gamma, pioglitazone.  J Pharmacol Exp Ther. 2003;  306(3) 846-854
  • 121 LeBrasseur N K, Kelly M, Tsao T S et al.. Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues.  Am J Physiol Endocrinol Metab. 2006;  291(1) E175-E181
  • 122 Wu Z, Xie Y, Morrison R F, Bucher N L, Farmer S R. PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes.  J Clin Invest. 1998;  101(1) 22-32
  • 123 Ribon V, Johnson J H, Camp H S, Saltiel A R. Thiazolidinediones and insulin resistance: peroxisome proliferator-activated receptor gamma activation stimulates expression of the CAP gene.  Proc Natl Acad Sci U S A. 1998;  95(25) 14751-14756
  • 124 Shi H, Cave B, Inouye K, Bjørbaek C, Flier J S. Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance.  Diabetes. 2006;  55(3) 699-707
  • 125 Kim J B, Spiegelman B M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism.  Genes Dev. 1996;  10(9) 1096-1107
  • 126 Matsusue K, Haluzik M, Lambert G et al.. Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes.  J Clin Invest. 2003;  111(5) 737-747
  • 127 Gavrilova O, Haluzik M, Matsusue K et al.. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass.  J Biol Chem. 2003;  278(36) 34268-34276
  • 128 Savage D B, Tan G D, Acerini C L et al.. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma.  Diabetes. 2003;  52(4) 910-917
  • 129 Belfort R, Harrison S A, Brown K et al.. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis.  N Engl J Med. 2006;  355(22) 2297-2307
  • 130 Mayerson A B, Hundal R S, Dufour S et al.. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes.  Diabetes. 2002;  51(3) 797-802
  • 131 Sanyal A J, Chalasani N, Kowdley K V NASH CRN et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis.  N Engl J Med. 2010;  362(18) 1675-1685
  • 132 Albano E. Oxidative mechanisms in the pathogenesis of alcoholic liver disease.  Mol Aspects Med. 2008;  29(1-2) 9-16
  • 133 Caldwell S H, Swerdlow R H, Khan E M et al.. Mitochondrial abnormalities in non-alcoholic steatohepatitis.  J Hepatol. 1999;  31(3) 430-434
  • 134 Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications.  Hepatology. 2010;  51(2) 679-689
  • 135 Fabbrini E, Mohammed B S, Magkos F, Korenblat K M, Patterson B W, Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease.  Gastroenterology. 2008;  134(2) 424-431
  • 136 Adiels M, Taskinen M R, Packard C et al.. Overproduction of large VLDL particles is driven by increased liver fat content in man.  Diabetologia. 2006;  49(4) 755-765
  • 137 Noga A A, Zhao Y, Vance D E. An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins.  J Biol Chem. 2002;  277(44) 42358-42365
  • 138 Nishimaki-Mogami T, Suzuki K, Takahashi A. The role of phosphatidylethanolamine methylation in the secretion of very low density lipoproteins by cultured rat hepatocytes: rapid inhibition of phosphatidylethanolamine methylation by bezafibrate increases the density of apolipoprotein B48-containing lipoproteins.  Biochim Biophys Acta. 1996;  1304(1) 21-31
  • 139 Hoffman D R, Cornatzer W E. Microsomal phosphatidylethanolamine methyltransferase: some physical and kinetic properties.  Lipids. 1981;  16(7) 533-540
  • 140 Barak A J, Beckenhauer H C, Mailliard M E, Kharbanda K K, Tuma D J. Betaine lowers elevated S-adenosylhomocysteine levels in hepatocytes from ethanol-fed rats.  J Nutr. 2003;  133(9) 2845-2848
  • 141 Kharbanda K K, Rogers II D D, Mailliard M E et al.. A comparison of the effects of betaine and S-adenosylmethionine on ethanol-induced changes in methionine metabolism and steatosis in rat hepatocytes.  J Nutr. 2005;  135(3) 519-524
  • 142 Kharbanda K K, Mailliard M E, Baldwin C R, Beckenhauer H C, Sorrell M F, Tuma D J. Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolamine methyltransferase pathway.  J Hepatol. 2007;  46(2) 314-321
  • 143 Sparks J D, Collins H L, Chirieac D V et al.. Hepatic very-low-density lipoprotein and apolipoprotein B production are increased following in vivo induction of betaine-homocysteine S-methyltransferase.  Biochem J. 2006;  395(2) 363-371
  • 144 Améen C, Edvardsson U, Ljungberg A et al.. Activation of peroxisome proliferator-activated receptor alpha increases the expression and activity of microsomal triglyceride transfer protein in the liver.  J Biol Chem. 2005;  280(2) 1224-1229
  • 145 Sugimoto T, Yamashita S, Ishigami M et al.. Decreased microsomal triglyceride transfer protein activity contributes to initiation of alcoholic liver steatosis in rats.  J Hepatol. 2002;  36(2) 157-162

David CrabbM.D. 

545 Barnhill Drive EH 317

Indianapolis, IN 46202

Email: dcrabb@iupui.edu