ABSTRACT
With the advent of efficient systems to propagate the hepatitis C virus (HCV) in cultured
cells important new discoveries have been made. For instance, several molecules required
for HCV infection of hepatocytes have been identified and first insights into the
entry pathway have been gained. Ribonucleic acid (RNA) replication and virion assembly
were found to be tightly linked to lipid metabolism and numerous host factors contributing
to viral replication have been identified. Some of them such as cyclophilin A or microRNA-122
are attractive targets for antiviral therapy as are the viral serine-type protease
residing in nonstructural protein 3 (NS3) and the NS5B RNA-dependent RNA polymerase.
More recently, the viral phosphoprotein NS5A emerged as an additional and very promising
target for selective therapy. These results illustrate the great progress that has
been made in the HCV field and how this knowledge can be used to devise innovative
strategies to counteract this pathogen.
KEYWORDS
STAT-C - NS3 protease - NS5A protein - NS5B RNA-dependent RNA polymerase - miR-122
- cyclophilin A
REFERENCES
- 1
Choo Q L, Kuo G, Weiner A J, Overby L R, Bradley D W, Houghton M.
Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis
genome.
Science.
1989;
244(4902)
359-362
- 2
Kuo G, Choo Q L, Alter H J et al..
An assay for circulating antibodies to a major etiologic virus of human non-A, non-B
hepatitis.
Science.
1989;
244(4902)
362-364
- 3
Shepard C W, Finelli L, Alter M J.
Global epidemiology of hepatitis C virus infection.
Lancet Infect Dis.
2005;
5(9)
558-567
- 4
Seeff L B.
Natural history of chronic hepatitis C.
Hepatology.
2002;
36(5, Suppl 1)
S35-S46
- 5
Wiese M, Berr F, Lafrenz M, Porst H, Oesen U.
Low frequency of cirrhosis in a hepatitis C (genotype 1b) single-source outbreak in
Germany: a 20-year multicenter study.
Hepatology.
2000;
32(1)
91-96
- 6
Hoofnagle J H.
Course and outcome of hepatitis C.
Hepatology.
2002;
36(5, Suppl 1)
S21-S29
- 7
Poynard T, Yuen M F, Ratziu V, Lai C L.
Viral hepatitis C.
Lancet.
2003;
362(9401)
2095-2100
- 8
Gerlach J T, Diepolder H M, Zachoval R et al..
Acute hepatitis C: high rate of both spontaneous and treatment-induced viral clearance.
Gastroenterology.
2003;
125(1)
80-88
- 9
Micallef J M, Kaldor J M, Dore G J.
Spontaneous viral clearance following acute hepatitis C infection: a systematic review
of longitudinal studies.
J Viral Hepat.
2006;
13(1)
34-41
- 10
Alter M J.
Epidemiology of hepatitis C.
Eur J Gastroenterol Hepatol.
1996;
8(4)
319-323
- 11
Alter M J.
Epidemiology of hepatitis C virus infection.
World J Gastroenterol.
2007;
13(17)
2436-2441
- 12
Ge D, Fellay J, Thompson A J et al..
Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance.
Nature.
2009;
461(7262)
399-401
- 13
Tanaka Y, Nishida N, Sugiyama M et al..
Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin
therapy for chronic hepatitis C.
Nat Genet.
2009;
41(10)
1105-1109
- 14
Suppiah V, Moldovan M, Ahlenstiel G et al..
IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin
therapy.
Nat Genet.
2009;
41(10)
1100-1104
- 15
François C, Castelain S, Duverlie G, Capron D, Nguyen-Khac E.
Optimizing the treatment of chronic viral hepatitis C.
Expert Rev Gastroenterol Hepatol.
2009;
3(6)
607-613
- 16
Feld J J, Hoofnagle J H.
Mechanism of action of interferon and ribavirin in treatment of hepatitis C.
Nature.
2005;
436(7053)
967-972
- 17
Williams R.
Global challenges in liver disease.
Hepatology.
2006;
44(3)
521-526
- 18
Pham T N, King D, Macparland S A et al..
Hepatitis C virus replicates in the same immune cell subsets in chronic hepatitis
C and occult infection.
Gastroenterology.
2008;
134(3)
812-822
- 19
Bukh J.
A critical role for the chimpanzee model in the study of hepatitis C.
Hepatology.
2004;
39(6)
1469-1475
- 20
Lanford R E, Bigger C, Bassett S, Klimpel G.
The chimpanzee model of hepatitis C virus infections.
ILAR J.
2001;
42(2)
117-126
- 21
Lindenbach B D, Meuleman P, Ploss A et al..
Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in
vitro.
Proc Natl Acad Sci U S A.
2006;
103(10)
3805-3809
- 22
Bissig K D, Wieland S F, Tran P et al..
Human liver chimeric mice provide a model for hepatitis B and C virus infection and
treatment.
J Clin Invest.
2010;
120(3)
924-930
- 23
Meuleman P, Libbrecht L, De Vos R et al..
Morphological and biochemical characterization of a human liver in a uPA-SCID mouse
chimera.
Hepatology.
2005;
41(4)
847-856
- 24
Mercer D F, Schiller D E, Elliott J F et al..
Hepatitis C virus replication in mice with chimeric human livers.
Nat Med.
2001;
7(8)
927-933
- 25
Kuiken C, Simmonds P.
Nomenclature and numbering of the hepatitis C virus.
Methods Mol Biol.
2009;
510
33-53
- 26
Dazert E, Neumann-Haefelin C, Bressanelli S et al..
Loss of viral fitness and cross-recognition by CD8 + T cells limit HCV escape from
a protective HLA-B27-restricted human immune response.
J Clin Invest.
2009;
119(2)
376-386
- 27
Kieffer T L, Kwong A D, Picchio G R.
Viral resistance to specifically targeted antiviral therapies for hepatitis C (STAT-Cs).
J Antimicrob Chemother.
2010;
65(2)
202-212
- 28
Bartenschlager R, Frese M, Pietschmann T.
Novel insights into hepatitis C virus replication and persistence.
Adv Virus Res.
2004;
63
71-180
- 29
Lukavsky P J.
Structure and function of HCV IRES domains.
Virus Res.
2009;
139(2)
166-171
- 30
Friebe P, Lohmann V, Krieger N, Bartenschlager R.
Sequences in the 5′ nontranslated region of hepatitis C virus required for RNA replication.
J Virol.
2001;
75(24)
12047-12057
- 31
Jopling C L, Yi M, Lancaster A M, Lemon S M, Sarnow P.
Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA.
Science.
2005;
309(5740)
1577-1581
- 32
Henke J I, Goergen D, Zheng J et al..
microRNA-122 stimulates translation of hepatitis C virus RNA.
EMBO J.
2008;
27(24)
3300-3310
- 33
Jangra R K, Yi M, Lemon S M.
Regulation of hepatitis C virus translation and infectious virus production by the
microRNA miR-122.
J Virol.
2010;
84(13)
6615-6625
- 34
Jopling C L, Schütz S, Sarnow P.
Position-dependent function for a tandem microRNA miR-122-binding site located in
the hepatitis C virus RNA genome.
Cell Host Microbe.
2008;
4(1)
77-85
- 35
Lanford R E, Hildebrandt-Eriksen E S, Petri A et al..
Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection.
Science.
2010;
327(5962)
198-201
- 36
Yanagi M, St Claire M, Emerson S U, Purcell R H, Bukh J.
In vivo analysis of the 3′ untranslated region of the hepatitis C virus after in vitro
mutagenesis of an infectious cDNA clone.
Proc Natl Acad Sci U S A.
1999;
96(5)
2291-2295
- 37
Friebe P, Bartenschlager R.
Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus
that are important for RNA replication.
J Virol.
2002;
76(11)
5326-5338
- 38
Kolykhalov A A, Feinstone S M, Rice C M.
Identification of a highly conserved sequence element at the 3′ terminus of hepatitis
C virus genome RNA.
J Virol.
1996;
70(6)
3363-3371
- 39
Tanaka T, Kato N, Cho M J, Sugiyama K, Shimotohno K.
Structure of the 3′ terminus of the hepatitis C virus genome.
J Virol.
1996;
70(5)
3307-3312
- 40
Song Y, Friebe P, Tzima E, Jünemann C, Bartenschlager R, Niepmann M.
The hepatitis C virus RNA 3′-untranslated region strongly enhances translation directed
by the internal ribosome entry site.
J Virol.
2006;
80(23)
11579-11588
- 41
You S, Stump D D, Branch A D, Rice C M.
A cis-acting replication element in the sequence encoding the NS5B RNA-dependent RNA
polymerase is required for hepatitis C virus RNA replication.
J Virol.
2004;
78(3)
1352-1366
- 42
Friebe P, Boudet J, Simorre J P, Bartenschlager R.
Kissing-loop interaction in the 3′ end of the hepatitis C virus genome essential for
RNA replication.
J Virol.
2005;
79(1)
380-392
- 43
Diviney S, Tuplin A, Struthers M et al..
A hepatitis C virus cis-acting replication element forms a long-range RNA-RNA interaction
with upstream RNA sequences in NS5B.
J Virol.
2008;
82(18)
9008-9022
- 44
Moradpour D, Penin F, Rice C M.
Replication of hepatitis C virus.
Nat Rev Microbiol.
2007;
5(6)
453-463
- 45
Hijikata M, Kato N, Ootsuyama Y, Nakagawa M, Shimotohno K.
Gene mapping of the putative structural region of the hepatitis C virus genome by
in vitro processing analysis.
Proc Natl Acad Sci U S A.
1991;
88(13)
5547-5551
- 46
McLauchlan J, Lemberg M K, Hope G, Martoglio B.
Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to
lipid droplets.
EMBO J.
2002;
21(15)
3980-3988
- 47
Miyanari Y, Atsuzawa K, Usuda N et al..
The lipid droplet is an important organelle for hepatitis C virus production.
Nat Cell Biol.
2007;
9(9)
1089-1097
- 48
Boulant S, Montserret R, Hope R G et al..
Structural determinants that target the hepatitis C virus core protein to lipid droplets.
J Biol Chem.
2006;
281(31)
22236-22247
- 49
Eng F J, Walewski J L, Klepper A L et al..
Internal initiation stimulates production of p8 minicore, a member of a newly discovered
family of hepatitis C virus core protein isoforms.
J Virol.
2009;
83(7)
3104-3114
- 50
Branch A D, Stump D D, Gutierrez J A, Eng F, Walewski J L.
The hepatitis C virus alternate reading frame (ARF) and its family of novel products:
the alternate reading frame protein/F-protein, the double-frameshift protein, and
others.
Semin Liver Dis.
2005;
25(1)
105-117
- 51
Vassilaki N, Mavromara P.
The HCV ARFP/F/core + 1 protein: production and functional analysis of an unconventional
viral product.
IUBMB Life.
2009;
61(7)
739-752
- 52
Ratinier M, Boulant S, Crussard S, McLauchlan J, Lavergne J P.
Subcellular localizations of the hepatitis C virus alternate reading frame proteins.
Virus Res.
2009;
139(1)
106-110
- 53
Dubuisson J.
Folding, assembly and subcellular localization of hepatitis C virus glycoproteins.
Curr Top Microbiol Immunol.
2000;
242
135-148
- 54
Dubuisson J, Rice C M.
Hepatitis C virus glycoprotein folding: disulfide bond formation and association with
calnexin.
J Virol.
1996;
70(2)
778-786
- 55
Choukhi A, Ung S, Wychowski C, Dubuisson J.
Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus
glycoproteins.
J Virol.
1998;
72(5)
3851-3858
- 56
Merola M, Brazzoli M, Cocchiarella F et al..
Folding of hepatitis C virus E1 glycoprotein in a cell-free system.
J Virol.
2001;
75(22)
11205-11217
- 57
Michalak J P, Wychowski C, Choukhi A et al..
Characterization of truncated forms of hepatitis C virus glycoproteins.
J Gen Virol.
1997;
78(Pt 9)
2299-2306
- 58
Dubuisson J, Hsu H H, Cheung R C, Greenberg H B, Russell D G, Rice C M.
Formation and intracellular localization of hepatitis C virus envelope glycoprotein
complexes expressed by recombinant vaccinia and Sindbis viruses.
J Virol.
1994;
68(10)
6147-6160
- 59
Ralston R, Thudium K, Berger K et al..
Characterization of hepatitis C virus envelope glycoprotein complexes expressed by
recombinant vaccinia viruses.
J Virol.
1993;
67(11)
6753-6761
- 60
Deleersnyder V, Pillez A, Wychowski C et al..
Formation of native hepatitis C virus glycoprotein complexes.
J Virol.
1997;
71(1)
697-704
- 61
Carrère-Kremer S, Montpellier-Pala C, Cocquerel L, Wychowski C, Penin F, Dubuisson J.
Subcellular localization and topology of the p7 polypeptide of hepatitis C virus.
J Virol.
2002;
76(8)
3720-3730
- 62
Luik P, Chew C, Aittoniemi J et al..
The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy.
Proc Natl Acad Sci U S A.
2009;
106(31)
12712-12716
- 63
Steinmann E, Penin F, Kallis S, Patel A H, Bartenschlager R, Pietschmann T.
Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions.
PLoS Pathog.
2007;
3(7)
e103
- 64
Hijikata M, Mizushima H, Akagi T et al..
Two distinct proteinase activities required for the processing of a putative nonstructural
precursor protein of hepatitis C virus.
J Virol.
1993;
67(8)
4665-4675
- 65
Lorenz I C, Marcotrigiano J, Dentzer T G, Rice C M.
Structure of the catalytic domain of the hepatitis C virus NS2-3 protease.
Nature.
2006;
442(7104)
831-835
- 66
Lohmann V, Körner F, Koch J O, Herian U, Theilmann L, Bartenschlager R.
Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line.
Science.
1999;
285(5424)
110-113
- 67
Jones C T, Murray C L, Eastman D K, Tassello J, Rice C M.
Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus.
J Virol.
2007;
81(16)
8374-8383
- 68
Jirasko V, Montserret R, Appel N et al..
Structural and functional characterization of nonstructural protein 2 for its role
in hepatitis C virus assembly.
J Biol Chem.
2008;
283(42)
28546-28562
- 69
Bartenschlager R, Ahlborn-Laake L, Mous J, Jacobsen H.
Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase
required for cleavage at the NS3/4 and NS4/5 junctions.
J Virol.
1993;
67(7)
3835-3844
- 70
Grakoui A, McCourt D W, Wychowski C, Feinstone S M, Rice C M.
A second hepatitis C virus-encoded proteinase.
Proc Natl Acad Sci U S A.
1993;
90(22)
10583-10587
- 71
Kolykhalov A A, Mihalik K, Feinstone S M, Rice C M.
Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3′
nontranslated region are essential for virus replication in vivo.
J Virol.
2000;
74(4)
2046-2051
- 72
Ma Y, Yates J, Liang Y, Lemon S M, Yi M.
NS3 helicase domains involved in infectious intracellular hepatitis C virus particle
assembly.
J Virol.
2008;
82(15)
7624-7639
- 73
Phan T, Beran R K, Peters C, Lorenz I C, Lindenbach B D.
Hepatitis C virus NS2 protein contributes to virus particle assembly via opposing
epistatic interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes.
J Virol.
2009;
83(17)
8379-8395
- 74
Failla C, Tomei L, De Francesco R.
Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural
proteins.
J Virol.
1994;
68(6)
3753-3760
- 75
Bartenschlager R, Ahlborn-Laake L, Mous J, Jacobsen H.
Kinetic and structural analyses of hepatitis C virus polyprotein processing.
J Virol.
1994;
68(8)
5045-5055
- 76
Wölk B, Sansonno D, Kräusslich H G et al..
Subcellular localization, stability, and trans-cleavage competence of the hepatitis
C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines.
J Virol.
2000;
74(5)
2293-2304
- 77
Li K, Foy E, Ferreon J C et al..
Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like
receptor 3 adaptor protein TRIF.
Proc Natl Acad Sci U S A.
2005;
102(8)
2992-2997
- 78
Meylan E, Curran J, Hofmann K et al..
Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis
C virus.
Nature.
2005;
437(7062)
1167-1172
- 79
Lamarre D, Anderson P C, Bailey M et al..
An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis
C virus.
Nature.
2003;
426(6963)
186-189
- 80
Lundin M, Monné M, Widell A, Von Heijne G, Persson M A.
Topology of the membrane-associated hepatitis C virus protein NS4B.
J Virol.
2003;
77(9)
5428-5438
- 81
Gouttenoire J, Penin F, Moradpour D.
Hepatitis C virus nonstructural protein 4B: a journey into unexplored territory.
Rev Med Virol.
2010;
20(2)
117-129
- 82
Egger D, Wölk B, Gosert R et al..
Expression of hepatitis C virus proteins induces distinct membrane alterations including
a candidate viral replication complex.
J Virol.
2002;
76(12)
5974-5984
- 83
Einav S, Gerber D, Bryson P D et al..
Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic
affinity analysis.
Nat Biotechnol.
2008;
26(9)
1019-1027
- 84
Einav S, Elazar M, Danieli T, Glenn J S.
A nucleotide binding motif in hepatitis C virus (HCV) NS4B mediates HCV RNA replication.
J Virol.
2004;
78(20)
11288-11295
- 85
Lohmann V, Hoffmann S, Herian U, Penin F, Bartenschlager R.
Viral and cellular determinants of hepatitis C virus RNA replication in cell culture.
J Virol.
2003;
77(5)
3007-3019
- 86
Kaneko T, Tanji Y, Satoh S et al..
Production of two phosphoproteins from the NS5A region of the hepatitis C viral genome.
Biochem Biophys Res Commun.
1994;
205(1)
320-326
- 87
Quintavalle M, Sambucini S, Di Pietro C, De Francesco R, Neddermann P.
The alpha isoform of protein kinase CKI is responsible for hepatitis C virus NS5A
hyperphosphorylation.
J Virol.
2006;
80(22)
11305-11312
- 88
Tellinghuisen T L, Foss K L, Treadaway J.
Regulation of hepatitis C virion production via phosphorylation of the NS5A protein.
PLoS Pathog.
2008;
4(3)
e1000032
- 89
Appel N, Pietschmann T, Bartenschlager R.
Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role
of differential phosphorylation in RNA replication and identification of a genetically
flexible domain.
J Virol.
2005;
79(5)
3187-3194
- 90
Evans M J, Rice C M, Goff S P.
Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein
interactions and viral RNA replication.
Proc Natl Acad Sci U S A.
2004;
101(35)
13038-13043
- 91
Neddermann P, Quintavalle M, Di Pietro C et al..
Reduction of hepatitis C virus NS5A hyperphosphorylation by selective inhibition of
cellular kinases activates viral RNA replication in cell culture.
J Virol.
2004;
78(23)
13306-13314
- 92
Gao L, Aizaki H, He J W, Lai M M.
Interactions between viral nonstructural proteins and host protein hVAP-33 mediate
the formation of hepatitis C virus RNA replication complex on lipid raft.
J Virol.
2004;
78(7)
3480-3488
- 93
Tellinghuisen T L, Marcotrigiano J, Rice C M.
Structure of the zinc-binding domain of an essential component of the hepatitis C
virus replicase.
Nature.
2005;
435(7040)
374-379
- 94
Love R A, Brodsky O, Hickey M J, Wells P A, Cronin C N.
Crystal structure of a novel dimeric form of NS5A domain I protein from hepatitis
C virus.
J Virol.
2009;
83(9)
4395-4403
- 95
Tellinghuisen T L, Marcotrigiano J, Gorbalenya A E, Rice C M.
The NS5A protein of hepatitis C virus is a zinc metalloprotein.
J Biol Chem.
2004;
279(47)
48576-48587
- 96
Brass V, Bieck E, Montserret R et al..
An amino-terminal amphipathic alpha-helix mediates membrane association of the hepatitis
C virus nonstructural protein 5A.
J Biol Chem.
2002;
277(10)
8130-8139
- 97
Penin F, Brass V, Appel N et al..
Structure and function of the membrane anchor domain of hepatitis C virus nonstructural
protein 5A.
J Biol Chem.
2004;
279(39)
40835-40843
- 98
Hinson E R, Cresswell P.
The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic
alpha-helix.
Proc Natl Acad Sci U S A.
2009;
106(48)
20452-20457
- 99
Tellinghuisen T L, Marcotrigiano J, Rice C M.
Structure of the zinc-binding domain of an essential component of the hepatitis C
virus replicase.
Nature.
2005;
435(7040)
374-379
- 100
Tellinghuisen T L, Foss K L, Treadaway J C, Rice C M.
Identification of residues required for RNA replication in domains II and III of the
hepatitis C virus NS5A protein.
J Virol.
2008;
82(3)
1073-1083
- 101
Appel N, Zayas M, Miller S et al..
Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious
particle assembly.
PLoS Pathog.
2008;
4(3)
e1000035
- 102
Behrens S E, Tomei L, De Francesco R.
Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus.
EMBO J.
1996;
15(1)
12-22
- 103
Lohmann V, Körner F, Herian U, Bartenschlager R.
Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and
identification of amino acid sequence motifs essential for enzymatic activity.
J Virol.
1997;
71(11)
8416-8428
- 104
Zhong W, Uss A S, Ferrari E, Lau J Y, Hong Z.
De novo initiation of RNA synthesis by hepatitis C virus nonstructural protein 5B
polymerase.
J Virol.
2000;
74(4)
2017-2022
- 105
Lesburg C A, Cable M B, Ferrari E, Hong Z, Mannarino A F, Weber P C.
Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals
a fully encircled active site.
Nat Struct Biol.
1999;
6(10)
937-943
- 106
Lohmann V, Overton H, Bartenschlager R.
Selective stimulation of hepatitis C virus and pestivirus NS5B RNA polymerase activity
by GTP.
J Biol Chem.
1999;
274(16)
10807-10815
- 107
Bressanelli S, Tomei L, Rey F A, De Francesco R.
Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides.
J Virol.
2002;
76(7)
3482-3492
- 108
André P, Komurian-Pradel F, Deforges S et al..
Characterization of low- and very-low-density hepatitis C virus RNA-containing particles.
J Virol.
2002;
76(14)
6919-6928
- 109
André P, Perlemuter G, Budkowska A, Bréchot C, Lotteau V.
Hepatitis C virus particles and lipoprotein metabolism.
Semin Liver Dis.
2005;
25(1)
93-104
- 110
Chang K S, Jiang J, Cai Z, Luo G.
Human apolipoprotein e is required for infectivity and production of hepatitis C virus
in cell culture.
J Virol.
2007;
81(24)
13783-13793
- 111
Meunier J C, Russell R S, Engle R E, Faulk K N, Purcell R H, Emerson S U.
Apolipoprotein c1 association with hepatitis C virus.
J Virol.
2008;
82(19)
9647-9656
- 112
Parent R, Qu X, Petit M A, Beretta L.
The heat shock cognate protein 70 is associated with hepatitis C virus particles and
modulates virus infectivity.
Hepatology.
2009;
49(6)
1798-1809
- 113
Koutsoudakis G, Kaul A, Steinmann E et al..
Characterization of the early steps of hepatitis C virus infection by using luciferase
reporter viruses.
J Virol.
2006;
80(11)
5308-5320
- 114
Barth H, Schafer C, Adah M I et al..
Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface
heparan sulfate.
J Biol Chem.
2003;
278(42)
41003-41012
- 115
Agnello V, Abel G, Elfahal M, Knight G B, Zhang Q X.
Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein
receptor.
Proc Natl Acad Sci U S A.
1999;
96(22)
12766-12771
- 116
Molina S, Castet V, Fournier-Wirth C et al..
The low-density lipoprotein receptor plays a role in the infection of primary human
hepatocytes by hepatitis C virus.
J Hepatol.
2007;
46(3)
411-419
- 117
Wünschmann S, Medh J D, Klinzmann D, Schmidt W N, Stapleton J T.
Characterization of hepatitis C virus (HCV) and HCV E2 interactions with CD81 and
the low-density lipoprotein receptor.
J Virol.
2000;
74(21)
10055-10062
- 118
Coyne C B, Bergelson J M.
Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial
tight junctions.
Cell.
2006;
124(1)
119-131
- 119
Scarselli E, Ansuini H, Cerino R et al..
The human scavenger receptor class B type I is a novel candidate receptor for the
hepatitis C virus.
EMBO J.
2002;
21(19)
5017-5025
- 120
Pileri P, Uematsu Y, Campagnoli S et al..
Binding of hepatitis C virus to CD81.
Science.
1998;
282(5390)
938-941
- 121
Evans M J, von Hahn T, Tscherne D M et al..
Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry.
Nature.
2007;
446(7137)
801-805
- 122
Liu S, Yang W, Shen L, Turner J R, Coyne C B, Wang T.
Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and
are downregulated during infection to prevent superinfection.
J Virol.
2009;
83(4)
2011-2014
- 123
Blanchard E, Belouzard S, Goueslain L et al..
Hepatitis C virus entry depends on clathrin-mediated endocytosis.
J Virol.
2006;
80(14)
6964-6972
- 124
Tscherne D M, Jones C T, Evans M J, Lindenbach B D, McKeating J A, Rice C M.
Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered
entry.
J Virol.
2006;
80(4)
1734-1741
- 125
Modis Y, Ogata S, Clements D, Harrison S C.
Structure of the dengue virus envelope protein after membrane fusion.
Nature.
2004;
427(6972)
313-319
- 126
Singh I, Helenius A.
Role of ribosomes in Semliki Forest virus nucleocapsid uncoating.
J Virol.
1992;
66(12)
7049-7058
- 127
Wengler G, Wengler G.
Identification of a transfer of viral core protein to cellular ribosomes during the
early stages of alphavirus infection.
Virology.
1984;
134(2)
435-442
- 128
Gosert R, Egger D, Lohmann V et al..
Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring
subgenomic replicons.
J Virol.
2003;
77(9)
5487-5492
- 129
Mackenzie J.
Wrapping things up about virus RNA replication.
Traffic.
2005;
6(11)
967-977
- 130
Welsch S, Miller S, Romero-Brey I et al..
Composition and three-dimensional architecture of the dengue virus replication and
assembly sites.
Cell Host Microbe.
2009;
5(4)
365-375
- 131
Quinkert D, Bartenschlager R, Lohmann V.
Quantitative analysis of the hepatitis C virus replication complex.
J Virol.
2005;
79(21)
13594-13605
- 132
Schlegel A, Giddings Jr T H, Ladinsky M S, Kirkegaard K.
Cellular origin and ultrastructure of membranes induced during poliovirus infection.
J Virol.
1996;
70(10)
6576-6588
- 133
Taylor M P, Kirkegaard K.
Potential subversion of autophagosomal pathway by picornaviruses.
Autophagy.
2008;
4(3)
286-289
- 134
Tai A W, Benita Y, Peng L F et al..
A functional genomic screen identifies cellular cofactors of hepatitis C virus replication.
Cell Host Microbe.
2009;
5(3)
298-307
- 135
Berger K L, Cooper J D, Heaton N S et al..
Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis
C virus replication.
Proc Natl Acad Sci U S A.
2009;
106(18)
7577-7582
- 136
Li Q, Brass A L, Ng A et al..
A genome-wide genetic screen for host factors required for hepatitis C virus propagation.
Proc Natl Acad Sci U S A.
2009;
106(38)
16410-16415
- 137
Trotard M, Lepère-Douard C, Régeard M et al..
Kinases required in hepatitis C virus entry and replication highlighted by small interference
RNA screening.
FASEB J.
2009;
23(11)
3780-3789
- 138
Borawski J, Troke P, Puyang X et al..
Class III phosphatidylinositol 4-kinase alpha and beta are novel host factor regulators
of hepatitis C virus replication.
J Virol.
2009;
83(19)
10058-10074
- 139
Vaillancourt F H, Pilote L, Cartier M et al..
Identification of a lipid kinase as a host factor involved in hepatitis C virus RNA
replication.
Virology.
2009;
387(1)
5-10
- 140
Hsu N Y, Ilnytska O, Belov G et al..
Viral reorganization of the secretory pathway generates distinct organelles for RNA
replication.
Cell.
2010;
141(5)
799-811
- 141
Wang C, Gale Jr M, Keller B C et al..
Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis
C virus RNA replication.
Mol Cell.
2005;
18(4)
425-434
- 142
Ye J, Wang C, Sumpter Jr R, Brown M S, Goldstein J L, Gale Jr M.
Disruption of hepatitis C virus RNA replication through inhibition of host protein
geranylgeranylation.
Proc Natl Acad Sci U S A.
2003;
100(26)
15865-15870
- 143
Kapadia S B, Chisari F V.
Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty
acids.
Proc Natl Acad Sci U S A.
2005;
102(7)
2561-2566
- 144
Yang W, Hood B L, Chadwick S L et al..
Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates
hepatitis C virus entry and production.
Hepatology.
2008;
48(5)
1396-1403
- 145
Sakamoto H, Okamoto K, Aoki M et al..
Host sphingolipid biosynthesis as a target for hepatitis C virus therapy.
Nat Chem Biol.
2005;
1(6)
333-337
- 146
Gastaminza P, Cheng G, Wieland S, Zhong J, Liao W, Chisari F V.
Cellular determinants of hepatitis C virus assembly, maturation, degradation, and
secretion.
J Virol.
2008;
82(5)
2120-2129
- 147
Huang H, Sun F, Owen D M et al..
Hepatitis C virus production by human hepatocytes dependent on assembly and secretion
of very low-density lipoproteins.
Proc Natl Acad Sci U S A.
2007;
104(14)
5848-5853
- 148
Jiang J, Luo G.
Apolipoprotein E but not B is required for the formation of infectious hepatitis C
virus particles.
J Virol.
2009;
83(24)
12680-12691
- 149
Benga W J, Krieger S E, Dimitrova M et al..
Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines
assembly of infectious particles.
Hepatology.
2010;
51(1)
43-53
- 150
Aizaki H, Morikawa K, Fukasawa M et al..
Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus
infection.
J Virol.
2008;
82(12)
5715-5724
- 151
Thomas D L, Thio C L, Martin M P et al..
Genetic variation in IL28B and spontaneous clearance of hepatitis C virus.
Nature.
2009;
461(7265)
798-801
- 152
International HapMap Consortium .
A haplotype map of the human genome.
Nature.
2005;
437(7063)
1299-1320
- 153
Marcello T, Grakoui A, Barba-Spaeth G et al..
Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal
transduction and gene regulation kinetics.
Gastroenterology.
2006;
131(6)
1887-1898
- 154
Sarasin-Filipowicz M, Oakeley E J, Duong F H et al..
Interferon signaling and treatment outcome in chronic hepatitis C.
Proc Natl Acad Sci U S A.
2008;
105(19)
7034-7039
- 155
Sarasin-Filipowicz M, Krol J, Markiewicz I, Heim M H, Filipowicz W.
Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly
to interferon therapy.
Nat Med.
2009;
15(1)
31-33
- 156
Vanwolleghem T, Bukh J, Meuleman P et al..
Polyclonal immunoglobulins from a chronic hepatitis C virus patient protect human
liver-chimeric mice from infection with a homologous hepatitis C virus strain.
Hepatology.
2008;
47(6)
1846-1855
- 157
Eren R, Landstein D, Terkieltaub D et al..
Preclinical evaluation of two neutralizing human monoclonal antibodies against hepatitis
C virus (HCV): a potential treatment to prevent HCV reinfection in liver transplant
patients.
J Virol.
2006;
80(6)
2654-2664
- 158
Meuleman P, Hesselgesser J, Paulson M et al..
Anti-CD81 antibodies can prevent a hepatitis C virus infection in vivo.
Hepatology.
2008;
48(6)
1761-1768
- 159
Grakoui A, Wychowski C, Lin C, Feinstone S M, Rice C M.
Expression and identification of hepatitis C virus polyprotein cleavage products.
J Virol.
1993;
67(3)
1385-1395
- 160
Love R A, Parge H E, Wickersham J A et al..
The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold
and a structural zinc binding site.
Cell.
1996;
87(2)
331-342
- 161
Kim J L, Morgenstern K A, Lin C et al..
Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic
NS4A cofactor peptide.
Cell.
1996;
87(2)
343-355
- 162
Landro J A, Raybuck S A, Luong Y P et al..
Mechanistic role of an NS4A peptide cofactor with the truncated NS3 protease of hepatitis
C virus: elucidation of the NS4A stimulatory effect via kinetic analysis and inhibitor
mapping.
Biochemistry.
1997;
36(31)
9340-9348
- 163
Steinkühler C, Biasiol G, Brunetti M et al..
Product inhibition of the hepatitis C virus NS3 protease.
Biochemistry.
1998;
37(25)
8899-8905
- 164
Sarrazin C, Zeuzem S.
Resistance to direct antiviral agents in patients with hepatitis C virus infection.
Gastroenterology.
2010;
138(2)
447-462
- 165
Walker M P, Hong Z.
HCV RNA-dependent RNA polymerase as a target for antiviral development.
Curr Opin Pharmacol.
2002;
2(5)
534-540
- 166
De Francesco R, Tomei L, Altamura S, Summa V, Migliaccio G.
Approaching a new era for hepatitis C virus therapy: inhibitors of the NS3-4A serine
protease and the NS5B RNA-dependent RNA polymerase.
Antiviral Res.
2003;
58(1)
1-16
- 167
De Francesco R, Rice C M.
New therapies on the horizon for hepatitis C: are we close?.
Clin Liver Dis.
2003;
7(1)
211-242, xi xi
- 168
Tomei L, Altamura S, Bartholomew L et al..
Mechanism of action and antiviral activity of benzimidazole-based allosteric inhibitors
of the hepatitis C virus RNA-dependent RNA polymerase.
J Virol.
2003;
77(24)
13225-13231
- 169
Gu B, Johnston V K, Gutshall L L et al..
Arresting initiation of hepatitis C virus RNA synthesis using heterocyclic derivatives.
J Biol Chem.
2003;
278(19)
16602-16607
- 170
Dhanak D, Duffy K J, Johnston V K et al..
Identification and biological characterization of heterocyclic inhibitors of the hepatitis
C virus RNA-dependent RNA polymerase.
J Biol Chem.
2002;
277(41)
38322-38327
- 171
Chen C M, He Y, Lu L et al..
Activity of a potent hepatitis C virus polymerase inhibitor in the chimpanzee model.
Antimicrob Agents Chemother.
2007;
51(12)
4290-4296
- 172
Brown N A.
Progress towards improving antiviral therapy for hepatitis C with hepatitis C virus
polymerase inhibitors. Part I: Nucleoside analogues.
Expert Opin Investig Drugs.
2009;
18(6)
709-725
- 173
Gao M, Nettles R E, Belema M et al..
Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical
effect.
Nature.
2010;
465(7294)
96-100
- 174
Lemm J A, O'Boyle II D, Liu M et al..
Identification of hepatitis C virus NS5A inhibitors.
J Virol.
2010;
84(1)
482-491
- 175
Tomei L, Altamura S, Bartholomew L et al..
Characterization of the inhibition of hepatitis C virus RNA replication by nonnucleosides.
J Virol.
2004;
78(2)
938-946
- 176
Mo H, Lu L, Pilot-Matias T et al..
Mutations conferring resistance to a hepatitis C virus (HCV) RNA-dependent RNA polymerase
inhibitor alone or in combination with an HCV serine protease inhibitor in vitro.
Antimicrob Agents Chemother.
2005;
49(10)
4305-4314
- 177
Koev G, Dekhtyar T, Han L et al..
Antiviral interactions of an HCV polymerase inhibitor with an HCV protease inhibitor
or interferon in vitro.
Antiviral Res.
2007;
73(1)
78-83
- 178 Gane E J, Roberts S K, Stedman C et al.. First-in-man demonstration of potent
antiviral activity with a nucleoside polymerase (R7128) and protease (R7227/ITMN-191)
inhibitor combination in HCV: safety, pharmacokinetics, and virologic results from
INFORM-1. Abstract 1046 presented at the European Association for the Study of the
Liver April 22–26, 2009 Copenhagen, Denmark;
- 179
Kaul A, Stauffer S, Berger C et al..
Essential role of cyclophilin A for hepatitis C virus replication and virus production
and possible link to polyprotein cleavage kinetics.
PLoS Pathog.
2009;
5(8)
e1000546
- 180
Yang F, Robotham J M, Nelson H B, Irsigler A, Kenworthy R, Tang H.
Cyclophilin A is an essential cofactor for hepatitis C virus infection and the principal
mediator of cyclosporine resistance in vitro.
J Virol.
2008;
82(11)
5269-5278
- 181
Chatterji U, Bobardt M, Selvarajah S et al..
The isomerase active site of cyclophilin A is critical for hepatitis C virus replication.
J Biol Chem.
2009;
284(25)
16998-17005
- 182
Ciesek S, Steinmann E, Wedemeyer H et al..
Cyclosporine A inhibits hepatitis C virus nonstructural protein 2 through cyclophilin
A.
Hepatology.
2009;
50(5)
1638-1645
- 183
Hanoulle X, Badillo A, Wieruszeski J M et al..
Hepatitis C virus NS5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase
activity of cyclophilins A and B.
J Biol Chem.
2009;
284(20)
13589-13601
- 184
Ma S, Boerner J E, TiongYip C et al..
NIM811, a cyclophilin inhibitor, exhibits potent in vitro activity against hepatitis
C virus alone or in combination with alpha interferon.
Antimicrob Agents Chemother.
2006;
50(9)
2976-2982
- 185
Paeshuyse J, Kaul A, De Clercq E et al..
The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis
C virus replication in vitro.
Hepatology.
2006;
43(4)
761-770
- 186
Flisiak R, Horban A, Gallay P et al..
The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C effect in patients
coinfected with hepatitis C and human immunodeficiency virus.
Hepatology.
2008;
47(3)
817-826
- 187
del Real G, Jiménez-Baranda S, Mira E et al..
Statins inhibit HIV-1 infection by down-regulating Rho activity.
J Exp Med.
2004;
200(4)
541-547
- 188
Giguère J F, Tremblay M J.
Statin compounds reduce human immunodeficiency virus type 1 replication by preventing
the interaction between virion-associated host intercellular adhesion molecule 1 and
its natural cell surface ligand LFA-1.
J Virol.
2004;
78(21)
12062-12065
- 189
Liu S, Rodriguez A V, Tosteson M T.
Role of simvastatin and methyl-beta-cyclodextrin [corrected] on inhibition of poliovirus
infection.
Biochem Biophys Res Commun.
2006;
347(1)
51-59
- 190
Ikeda M, Abe K, Yamada M, Dansako H, Naka K, Kato N.
Different anti-HCV profiles of statins and their potential for combination therapy
with interferon.
Hepatology.
2006;
44(1)
117-125
- 191
Amemiya F, Maekawa S, Itakura Y et al..
Targeting lipid metabolism in the treatment of hepatitis C virus infection.
J Infect Dis.
2008;
197(3)
361-370
- 192
Delang L, Paeshuyse J, Vliegen I et al..
Statins potentiate the in vitro anti-hepatitis C virus activity of selective hepatitis
C virus inhibitors and delay or prevent resistance development.
Hepatology.
2009;
50(1)
6-16
- 193
Ambros V.
The functions of animal microRNAs.
Nature.
2004;
431(7006)
350-355
- 194
Bartel D P.
MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell.
2004;
116(2)
281-297
- 195
Grimson A, Farh K K, Johnston W K, Garrett-Engele P, Lim L P, Bartel D P.
MicroRNA targeting specificity in mammals: determinants beyond seed pairing.
Mol Cell.
2007;
27(1)
91-105
- 196
Kloosterman W P, Plasterk R H.
The diverse functions of microRNAs in animal development and disease.
Dev Cell.
2006;
11(4)
441-450
- 197
Randall G, Panis M, Cooper J D et al..
Cellular cofactors affecting hepatitis C virus infection and replication.
Proc Natl Acad Sci U S A.
2007;
104(31)
12884-12889
- 198
Niepmann M.
Activation of hepatitis C virus translation by a liver-specific microRNA.
Cell Cycle.
2009;
8(10)
1473-1477
- 199
Elmén J, Lindow M, Schütz S et al..
LNA-mediated microRNA silencing in non-human primates.
Nature.
2008;
452(7189)
896-899
- 200
Wakita T, Pietschmann T, Kato T et al..
Production of infectious hepatitis C virus in tissue culture from a cloned viral genome.
Nat Med.
2005;
11(7)
791-796
- 201
Lindenbach B D, Evans M J, Syder A J et al..
Complete replication of hepatitis C virus in cell culture.
Science.
2005;
309(5734)
623-626
- 202
Zhong J, Gastaminza P, Cheng G et al..
Robust hepatitis C virus infection in vitro.
Proc Natl Acad Sci U S A.
2005;
102(26)
9294-9299
- 203
Masaki T, Suzuki R, Murakami K et al..
Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical
for the production of infectious virus particles.
J Virol.
2008;
82(16)
7964-7976
Ralf BartenschlagerPh.D.
Department of Infectious Diseases, Molecular Virology
Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
Email: Ralf_Bartenschlager@med.uni-heidelberg.de