RSS-Feed abonnieren
DOI: 10.1055/s-0030-1265219
© Georg Thieme Verlag KG Stuttgart · New York
Amelioration of Insulin Resistance by Scopoletin in High-Glucose-Induced, Insulin-Resistant HepG2 Cells
Publikationsverlauf
received 05.05.2010
accepted 24.08.2010
Publikationsdatum:
30. September 2010 (online)

Abstract
Insulin resistance plays an important role in the development of type 2 diabetes mellitus. Scopoletin, a phenolic coumarin, is reported to regulate hyperglycemia and diabetes. To examine its effect on insulin resistance, we treated high-glucose-induced, insulin-resistant HepG2 cells with scopoletin and measured phosphatidylinositol 3-kinase (PI3 K)-linked protein kinase B (Akt/PKB) phosphorylation. Scopoletin significantly stimulated the reactivation of insulin-mediated Akt/PKB phosphorylation. This effect was blocked by LY294002, a specific PI3 K inhibitor. The ability of scopoletin to activate insulin-mediated Akt/PKB was greater than that of rosiglitazone, a thiazolidinedione, and scopoletin was less adipogenic than rosiglitazone, as shown by the extent of lipid accumulation in differentiated adipocytes. Scopoletin increased the gene expression of both peroxisome proliferator-activated receptor γ2 (PPARγ2), a target receptor for rosiglitazone, and adipocyte-specific fatty acid binding protein, but not to the level induced by rosiglitazone. However, the PPARγ2 protein level was increased equally by rosiglitazone and scopoletin in differentiated adipocytes. Our results suggest that scopoletin can ameliorate insulin resistance in part by upregulating PPARγ2 expression. With its lower adipogenic property, scopoletin may be a useful candidate for managing metabolic disorders, including type 2 diabetes mellitus.
Key words
Akt/PKB - insulin resistance - PPARγ2 - scopoletin - type 2 diabetes mellitus
References
- 1
Efendic S, Luft R, Wajngot A.
Aspects of the pathogenesis of type 2 diabetes.
Endocr Rev.
1984;
5
395-410
MissingFormLabel
- 2
Groop LC.
Insulin resistance: the fundamental trigger of type 2 diabetes.
Diabetes Obes Metab.
1999;
1
(S 01)
S1-S7
MissingFormLabel
- 3
Gerich JE.
Pathogenesis and treatment of type 2 (noninsulin-dependent) diabetes mellitus (NIDDM).
Horm Metab Res.
1996;
28
404-412
MissingFormLabel
- 4
Reddy SS, Karuna R, Baskar R, Saralakumari D.
Prevention of insulin resistance by ingesting aqueous extract of Ocimum sanctum to fructose-fed rats.
Horm Metab Res.
2008;
40
44-49
MissingFormLabel
- 5
Kota BP, Huang TH, Roufogalis BD.
An overview on biological mechanisms of PPARs.
Pharmacol Res.
2005;
51
85-94
MissingFormLabel
- 6
Desvergne B, Wahli W.
Peroxisome proliferator-activated receptors: nuclear control of metabolism.
Endocr Rev.
1999;
20
649-688
MissingFormLabel
- 7
Kintscher U, Law RE.
PPARγ-mediated insulin sensitization: the importance of fat versus muscle.
Am J Physiol Endocrinol Metab.
2005;
288
E287-E291
MissingFormLabel
- 8
Tontonoz P, Hu E, Spiegelman BM.
Regulation of adipocyte gene expression and differentiation by peroxisome proliferator
activated receptor gamma.
Curr Opin Genet Dev.
1995;
5
571-576
MissingFormLabel
- 9
Picard F, Auwerx J.
PPAR(gamma) and glucose homeostasis.
Annu Rev Nutr.
2002;
22
167-197
MissingFormLabel
- 10
Ferre P.
The biology of peroxisome proliferator-activated receptors: relationship with lipid
metabolism and insulin sensitivity.
Diabetes.
2004;
53
(S 01)
S43-S50
MissingFormLabel
- 11
Nolan JJ, Ludvik B, Beerdsen P, Joyce M, Olefsky J.
Improvement in glucose tolerance and insulin resistance in obese subjects treated
with troglitazone.
N Engl J Med.
1994;
331
1188-1193
MissingFormLabel
- 12
Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA.
An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated
receptor gamma (PPAR gamma).
J Biol Chem.
1995;
270
12953-12956
MissingFormLabel
- 13
Adams M, Montague CT, Prins JB, Holder JC, Smith SA, Sanders L, Digby JE, Sewter CP, Lazar MA, Chatterjee VK, O’Rahilly S.
Activators of peroxisome proliferator-activated receptor gamma have depot-specific
effects on human preadipocyte differentiation.
J Clin Invest.
1997;
100
3149-3153
MissingFormLabel
- 14
Frias JP, Yu JG, Kruszynska YT, Olefsky JM.
Metabolic effects of troglitazone therapy in type 2 diabetic, obese, and lean normal
subjects.
Diabetes Care.
2000;
23
64-69
MissingFormLabel
- 15
Raskin P, Rappaport EB, Cole ST, Yan Y, Patwardhan R, Freed MI.
Rosiglitazone short-term monotherapy lowers fasting and post-prandial glucose in patients
with type II diabetes.
Diabetologia.
2000;
43
278-284
MissingFormLabel
- 16
Schindler K, Rieger A, Tura A, Gmeinhardt B, Touzeau-Romer V, Haider D, Pacini G, Ludvik B.
The effect of rosiglitazone on insulin sensitivity, beta cell function, bone mineral
density, and body composition in hiv-positive patients on highly-active antiretroviral
therapy (HAART).
Horm Metab Res.
2009;
41
573-579
MissingFormLabel
- 17
Willson TM, Lambert MH, Kliewer SA.
Peroxisome proliferator-activated receptor gamma and metabolic disease.
Annu Rev Biochem.
2001;
70
341-367
MissingFormLabel
- 18
Panda S, Kar A.
Evaluation of the antithyroid, antioxidative and antihyperglycemic activity of scopoletin
from Aegle marmelos leaves in hyperthyroid rats.
Phytother Res.
2006;
20
1103-1105
MissingFormLabel
- 19
Okada Y, Miyauchi N, Suzuki K, Kobayashi T, Tsutsui C, Mayuzumi K, Nishibe S, Okuyama T.
Search for naturally occurring substances to prevent the complications of diabetes.
II. Inhibitory effect of coumarin and flavonoid derivatives on bovine lens aldose
reductase and rabbit platelet aggregation.
Chem Pharm Bull (Tokyo).
1995;
43
1385-1387
MissingFormLabel
- 20
Nakajima K, Yamauchi K, Shigematsu S, Ikeo S, Komatsu M, Aizawa T, Hashizume K.
Selective attenuation of metabolic branch of insulin receptor down-signaling by high
glucose in a hepatoma cell line, HepG2 cells.
J Biol Chem.
2000;
275
20880-20886
MissingFormLabel
- 21
Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman NB, Cohen RA.
AMP-activated protein kinase is required for the lipid-lowering effect of metformin
in insulin-resistant human HepG2 cells.
J Biol Chem.
2004;
279
47898-47905
MissingFormLabel
- 22
Lee SY, Kang JS, Song GY, Myung CS.
Stress induces the expression of heterotrimeric G protein beta subunits and the phosphorylation
of PKB/Akt and ERK1/2 in rat brain.
Neurosci Res.
2006;
56
180-192
MissingFormLabel
- 23
Song GY, Kang JS, Lee SY, Myung CS.
Region-specific reduction of Gbeta4 expression and induction of the phosphorylation
of PKB/Akt and ERK1/2 by aging in rat brain.
Pharmacol Res.
2007;
56
295-302
MissingFormLabel
- 24
Xu ME, Xiao SZ, Sun YH, Ou-yang Y, Guan C, Zheng XX.
A preadipocyte differentiation assay as a method for screening potential anti-type
II diabetes drugs from herbal extracts.
Planta Med.
2006;
72
14-19
MissingFormLabel
- 25
DeFronzo RA.
Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible
for NIDDM.
Diabetes.
1988;
37
667-687
MissingFormLabel
- 26
DeFronzo RA.
Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the
treatment of type 2 diabetes mellitus.
Diabetes.
2009;
58
773-795
MissingFormLabel
- 27
DeFronzo RA.
Current issues in the treatment of type 2 diabetes. Overview of newer agents: where
treatment is going.
Am J Med.
2010;
123
S38-S48
MissingFormLabel
- 28
Shepherd PR, Withers DJ, Siddle K.
Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling.
Biochem J.
1998;
333
(Pt 3)
471-490
MissingFormLabel
- 29
Li P, Koike T, Qin B, Kubota M, Kawata Y, Jia YJ, Oshida Y.
A high-fructose diet impairs Akt and PKCζ phosphorylation and GLUT4 translocation
in rat skeletal muscle.
Horm Metab Res.
2008;
40
528-532
MissingFormLabel
- 30
Olefsky JM, Saltiel AR.
PPAR gamma and the treatment of insulin resistance.
Trends Endocrinol Metab.
2000;
11
362-368
MissingFormLabel
- 31
Olefsky JM.
Treatment of insulin resistance with peroxisome proliferator-activated receptor gamma
agonists.
J Clin Invest.
2000;
106
467-472
MissingFormLabel
- 32
Rahimian R, Masih-Khan E, Lo M, van Breemen C, McManus BM, Dube GP.
Hepatic over-expression of peroxisome proliferator activated receptor gamma2 in the
ob/ob mouse model of non-insulin dependent diabetes mellitus.
Mol Cell Biochem.
2001;
224
29-37
MissingFormLabel
- 33
Schoonjans K, Martin G, Staels B, Auwerx J.
Peroxisome proliferator-activated receptors, orphans with ligands and functions.
Curr Opin Lipidol.
1997;
8
159-166
MissingFormLabel
- 34
Glass CK, Rosenfeld MG.
The coregulator exchange in transcriptional functions of nuclear receptors.
Genes Dev.
2000;
14
121-141
MissingFormLabel
- 35
Hassan M, El Yazidi C, Landrier JF, Lairon D, Margotat A, Amiot MJ.
Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1
cells.
Biochem Biophys Res Commun.
2007;
361
208-213
MissingFormLabel
Correspondence
Dr. C-S. Myung
Department of Pharmacology
Chungnam National University
College of Pharmacy
220 Geung-dong, Yuseong-gu
Daejeon 305-764
Republic of Korea
Telefon: +82/42/821 5923
Fax: +82/42/821 8900
eMail: cm8r@cnu.ac.kr