Informationen aus Orthodontie & Kieferorthopädie 2010; 42(4): 223-233
DOI: 10.1055/s-0030-1262727
Originalarbeit

© Georg Thieme Verlag KG Stuttgart ˙ New York

Kieferorthopädische digitale Modelle: Wo stehen wir heute?

Orthodontic Digital Models: Where Are We Now?J. C. Danz1 , C. Katsaros1
  • 1Klinik für Kieferorthopädie, Zahnmedizinische Kliniken der Universität Bern, Schweiz
Further Information

Publication History

Publication Date:
13 January 2011 (online)

Zusammenfassung

Digitale Modelle finden immer breitere Anwendung im Alltag der kieferorthopädischen Praxen und Universitäten. Sie sind in der großen Mehrheit der Fälle eine brauchbare Alternative zu Gipsmodellen zur kieferorthopädischen Diagnostik und Behandlungsplanung. Das Ziel dieses Artikels ist es, eine Übersicht betreffend Qualität, Digitalisierungsmethoden und Darstellungsmöglichkeiten von digitalen Modellen zu geben. Die Qualität eines digitalen Modells wird bezüglich der Detailgenauigkeit, der Dimensionsgenauigkeit und der Registrierung diskutiert. Neben den Digitalisierungsmethoden und Darstellungsmöglichkeiten werden auch deren Grenzen beleuchtet. Das Wissen um mögliche Artefakte ist wertvoll für die Analyse und die diagnostische Aussagekraft von digitalen Modellen. Ausgehend von einem digitalen Modell wird an einem Beispiel gezeigt, wie Zahnbewegungen mit einem diagnostischen digitalen Setup simuliert werden können. 

Abstract

The everyday use of orthodontic digital models in orthodontic offices and universities is increasing. In the majority of the cases they are a valid alternative to plaster casts for orthodontic diagnosis and treatment planning. The purpose of this article is to give a survey about quality, methods of digitalisation and methods of visualisation. The quality of a digital model is discussed regarding detail reproduction, dimension accuracy and registration. This article focuses on digitalisation and visualisation methods as well as their limits. The knowledge about possible artefacts is important for analysis and diagnostic ability of digital models. How tooth movement can be simulated by a diagnostic digital setup based on a digital model is shown in one example. 

Literatur

  • 1 Veenema A, Katsaros C, Boxum S et al. Index of Complexity, Outcome and Need scored on plaster and digital models.  Eur J Orthod. 2009;  31 281-286
  • 2 Quimby M L, Vig K W, Rashid R G et al. The accuracy and reliability of measurements made on computer-based digital models.  Angle Orthod. 2004;  74 298-303
  • 3 Whetten J L, Williamson P C, Heo G et al. Variations in orthodontic treatment planning decisions of Class II patients between virtual 3-dimensional models and traditional plaster study models.  Am J Orthod Dentofacial Orthop. 2006;  130 485-491
  • 4 Okunami T R, Kusnoto B, BeGole E et al. Assessing the American Board of Orthodontics objective grading system: digital vs plaster dental casts.  Am J Orthod Dentofacial Orthop. 2007;  131 51-56
  • 5 Pant R, Juszczyk A S, Clark R K et al. Long-term dimensional stability and reproduction of surface detail of four polyvinyl siloxane duplicating materials.  J Dent. 2008;  36 456-461
  • 6 Petrie C S, Walker M P, O'Mahony A M et al. Dimensional accuracy and surface detail reproduction of two hydrophilic vinyl polysiloxane impression materials tested under dry, moist, and wet conditions.  J Prosthet Dent. 2003;  90 365-372
  • 7 Liedke G S, da Silveira H E, da Silveira H L et al. Influence of voxel size in the diagnostic ability of cone beam tomography to evaluate simulated external root resorption.  J Endod. 2009;  35 233-235
  • 8 Tomassetti J J, Taloumis L J, Denny J M et al. A comparison of 3 computerized Bolton tooth-size analyses with a commonly used method.  Angle Orthod. 2001;  71 351-357
  • 9 Dalstra M, Melsen B. From alginate impressions to digital virtual models: accuracy and reproducibility.  J Orthod. 2009;  36 36-41
  • 10 Zilberman O, Huggare J A, Parikakis K A. Evaluation of the validity of tooth size and arch width measurements using conventional and three-dimensional virtual orthodontic models.  Angle Orthod. 2003;  73 301-306
  • 11 Sjögren A, Lindgren J, Huggare J. Orthodontic Study Cast Analysis-Reproducibility of Recordings and Agreement Between Conventional and 3D Virtual Measurements.  J Digit Imaging. 2010;  23 482-492
  • 12 Santoro M, Galkin S, Teredesai M et al. Comparison of measurements made on digital and plaster models.  Am J Orthod Dentofacial Orthop. 2003;  124 101-105
  • 13 Leifert M F, Leifert M M, Efstratiadis S S et al. Comparison of space analysis evaluations with digital models and plaster dental casts.  Am J Orthod Dentofacial Orthop. 2009;  136 16.e11-16.e14
  • 14 Danz J C, Katsaros C. Registrierung kieferorthopädischer digitaler Modelle: Wie kann die Okklusion korrekt reproduziert werden?.  Inf Orthod Kieferorthop. 2010;  42 235-243
  • 15 White A J, Fallis D W, Vandewalle K S. Analysis of intra-arch and interarch measurements from digital models with 2 impression materials and a modeling process based on cone-beam computed tomography.  Am J Orthod Dentofacial Orthop. 2010;  137 456.e451-456.e459
  • 16 Mayers M, Firestone A R, Rashid R et al. Comparison of peer assessment rating (PAR) index scores of plaster and computer-based digital models.  Am J Orthod Dentofacial Orthop. 2005;  128 431-434
  • 17 Rheude B, Sadowsky P L, Ferriera A et al. An evaluation of the use of digital study models in orthodontic diagnosis and treatment planning.  Angle Orthod. 2005;  75 300-304
  • 18 Stevens D R, Flores-Mir C, Nebbe B et al. Validity, reliability, and reproducibility of plaster vs digital study models: comparison of peer assessment rating and Bolton analysis and their constituent measurements.  Am J Orthod Dentofacial Orthop. 2006;  129 794-803
  • 19 Bell A, Ayoub A F, Siebert P. Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models.  J Orthod. 2003;  30 219-223
  • 20 Goshtasby A A. A System for Digital Reconstruction of Gypsum Dental Casts.  IEEE Transactions on Medical Imaging. 1998;  16 664-674
  • 21 Asquith J, Gillgrass T, Mossey P. Three-dimensional imaging of orthodontic models: a pilot study.  Eur J Orthod. 2007;  29 517-522
  • 22 Besl P, McKay H. A method for registration of 3-D shapes.  Pattern Analysis and Machine Intelligence, IEEE Transactions on Medical Imaging. 1992;  14 239-256
  • 23 Andreetto M. Automatic 3D modeling of palatal plaster casts. IEEE Proceedings of the Fourth International Conference on 3-D Digital Imaging and Modeling 2001: 1–7
  • 24 Unger M, Pock T, Bischof H. Interactive Globally Optimal Image Segmentation. Computer Graphics & Vision 2008: 1–114
  • 25 Damstra J, Fourie Z, Slater J JH et al. Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes.  Am J Orthod Dentofacial Orthop. 2009;  137 16.e11-16.e16
  • 26 Boyd S K, Müller R. Smooth surface meshing for automated finite element model generation from 3D image data.  J Biomech. 2006;  39 1287-1295
  • 27 Li L, He M, Wang P. Mesh simplification algorithm based on absolute curvature-weighted quadric error metrics. IEEE Proceedings of the fifth IEEE Conference on Industrial Electronics and Applications (ICIEA) 2010: 399–403
  • 28 Andrews L F. The six keys to normal occlusion.  Am J Orthod. 1972;  62 296-309

Appendix

Ein zusätzliches Video zu diesem Beitrag finden Sie online: www.thieme-connect.de/ejournals unter „Informationen aus Orthodontie und Kieferorthopädie“

Dr. Jan Christian Danz

Klinik für Kieferorthopädie · Zahnmedizinische Kliniken der Universität Bern

Freiburgstrasse 7

CH-3010 Bern

Schweiz

Phone: +41 / (0) 31 / 6 32 25 91

Fax: +41 / (0) 31 / 6 32 98 69

Email: jan.danz@zmk.unibe.ch

    >